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Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b ( i n t k ) {
r e t u rn k <= 1

? 1
: f i b ( k − 1) + f i b ( k − 2 ) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k
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Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)
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Implicit topological sort

No graph is typically needed

I If you know there are no cycles, just store the evaluated values

I Memoization

i n t cache [MAX N ] ; // add s t o r a g e f o r the v a l u e s

i n t f i b ( i n t k ) {
i f ( cache [ k ] != 0) { // check i f the v a l u e has been computed

r e t u r n cache [ k ] ;
}
r e t u rn cache [ k ] = k <= 1 // compute and s t o r e the v a l u e

? 1
: f i b ( k − 1) + f i b ( k − 2 ) ;

}
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Variants of dynamic programming

No recursion is often needed

I You can use one of possible topological sort orders if you know it

I The Fibonacci example: go from 0 to k
I The “top-down” dynamic programming

I Compute values by running a function on dependencies

i n t f i b ( i n t k ) {
i n t v a l u e s [ k + 1 ] ; // the s t o r a g e f o r the v a l u e s
v a l u e s [ 0 ] = v a l u e s [ 1 ] = 1 ; // i n i t i a l v a l u e s
f o r ( i n t i = 2 ; i <= k ; ++i ) {

v a l u e s [ i ] = v a l u e s [ i − 1 ] + v a l u e s [ i − 2 ] ; // top−down
}
r e t u rn v a l u e s [ k ] ;

}
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When to use dynamic programming?

Condition 1: Optimal substructure

I An (optimal) solution of the problem can be efficiently constructed from (optimal)
solutions of its subproblems

I Subproblems are:
I smaller instances of the original problem
I smaller instances of generalized versions of the original problem

Condition 2: Overlapping subproblems

I If subproblems need totally different things to be solved,
no need to store their solutions anywhere:
this is a divide-and-conquer algorithm
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Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8
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