
How to Win Coding Competitions: Secrets of Champions

Week 5: Algorithms on Graphs 1
Lecture 6: Introduction to dynamic programming

Maxim Buzdalov
Saint Petersburg 2016

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u rn k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1

=
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Fibonacci numbers

Fibonacci numbers: Definition

F0 = 1

F1 = 1

Fk = Fk−1 + Fk−2

How to compute?

i n t f i b (i n t k) {
r e t u r n k <= 1

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

How fast is it?

T0 = Θ(1)

T1 = Θ(1)

Tk = Θ(1) + Tk−1 + Tk−2

How large is Tk?

I Assume all Θ(1) = 1

I Tk + 1 = (Tk−1 + 1) + (Tk−2 + 1)

I Tk = 2 · Fk − 1 =
[
1.618...k√

5

]
· 2 − 1

I That is, exponentially slow in k

2 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Computation of Fibonacci numbers as a graph

Fk

Fk−1 Fk−2

Fk−3 Fk−4

. . . F2

F1 F0

I The graph is acyclic

I Topological sort is possible

I Possible to evaluate each node
once in the reversed order of
topological sort

Dynamic programming

I Solves this problem in Θ(k)

3 / 8

Implicit topological sort

No graph is typically needed

I If you know there are no cycles, just store the evaluated values

I Memoization

i n t cache [MAX N] ; // add s t o r a g e f o r the v a l u e s

i n t f i b (i n t k) {
i f (cache [k] != 0) { // check i f the v a l u e has been computed

r e t u r n cache [k] ;
}
r e t u rn cache [k] = k <= 1 // compute and s t o r e the v a l u e

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

4 / 8

Implicit topological sort

No graph is typically needed

I If you know there are no cycles, just store the evaluated values

I Memoization

i n t cache [MAX N] ; // add s t o r a g e f o r the v a l u e s

i n t f i b (i n t k) {
i f (cache [k] != 0) { // check i f the v a l u e has been computed

r e t u r n cache [k] ;
}
r e t u r n cache [k] = k <= 1 // compute and s t o r e the v a l u e

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

4 / 8

Implicit topological sort

No graph is typically needed

I If you know there are no cycles, just store the evaluated values

I Memoization

i n t cache [MAX N] ; // add s t o r a g e f o r the v a l u e s

i n t f i b (i n t k) {
i f (cache [k] != 0) { // check i f the v a l u e has been computed

r e t u r n cache [k] ;
}
r e t u r n cache [k] = k <= 1 // compute and s t o r e the v a l u e

? 1
: f i b (k − 1) + f i b (k − 2) ;

}

4 / 8

Variants of dynamic programming

No recursion is often needed

I You can use one of possible topological sort orders if you know it

I The Fibonacci example: go from 0 to k
I The “top-down” dynamic programming

I Compute values by running a function on dependencies

i n t f i b (i n t k) {
i n t v a l u e s [k + 1] ; // the s t o r a g e f o r the v a l u e s
v a l u e s [0] = v a l u e s [1] = 1 ; // i n i t i a l v a l u e s
f o r (i n t i = 2 ; i <= k ; ++i) {

v a l u e s [i] = v a l u e s [i − 1] + v a l u e s [i − 2] ; // top−down
}
r e t u rn v a l u e s [k] ;

}

5 / 8

Variants of dynamic programming

No recursion is often needed

I You can use one of possible topological sort orders if you know it

I The Fibonacci example: go from 0 to k
I The “top-down” dynamic programming

I Compute values by running a function on dependencies

i n t f i b (i n t k) {
i n t v a l u e s [k + 1] ; // the s t o r a g e f o r the v a l u e s
v a l u e s [0] = v a l u e s [1] = 1 ; // i n i t i a l v a l u e s
f o r (i n t i = 2 ; i <= k ; ++i) {

v a l u e s [i] = v a l u e s [i − 1] + v a l u e s [i − 2] ; // top−down
}
r e t u r n v a l u e s [k] ;

}

5 / 8

Variants of dynamic programming

No recursion is often needed

I You can use one of possible topological sort orders if you know it

I The Fibonacci example: go from 0 to k
I The “bottom-up” dynamic programming

I When a value is computed, update values depending on it

i n t f i b (i n t k) {
i n t v a l u e s [k + 2] ; // the s t o r a g e f o r the va l u e s , i n i t i a l l y z e r o s
f o r (i n t i = 0 ; i < k ; ++i) {

i f (i <= 1) {
v a l u e s [i] = 1 ;

}
v a l u e s [i + 1] += va l u e s [i] ; // update one dependency
v a l u e s [i + 2] += va l u e s [i] ; // update ano the r dependency

}
r e t u rn v a l u e s [k] ;

}

6 / 8

Variants of dynamic programming

No recursion is often needed

I You can use one of possible topological sort orders if you know it

I The Fibonacci example: go from 0 to k
I The “bottom-up” dynamic programming

I When a value is computed, update values depending on it

i n t f i b (i n t k) {
i n t v a l u e s [k + 2] ; // the s t o r a g e f o r the va l u e s , i n i t i a l l y z e r o s
f o r (i n t i = 0 ; i < k ; ++i) {

i f (i <= 1) {
v a l u e s [i] = 1 ;

}
v a l u e s [i + 1] += va l u e s [i] ; // update one dependency
v a l u e s [i + 2] += va l u e s [i] ; // update ano the r dependency

}
r e t u r n v a l u e s [k] ;

} 6 / 8

When to use dynamic programming?

Condition 1: Optimal substructure

I An (optimal) solution of the problem can be efficiently constructed from (optimal)
solutions of its subproblems

I Subproblems are:
I smaller instances of the original problem
I smaller instances of generalized versions of the original problem

Condition 2: Overlapping subproblems

I If subproblems need totally different things to be solved,
no need to store their solutions anywhere:
this is a divide-and-conquer algorithm

7 / 8

When to use dynamic programming?

Condition 1: Optimal substructure

I An (optimal) solution of the problem can be efficiently constructed from (optimal)
solutions of its subproblems

I Subproblems are:
I smaller instances of the original problem
I smaller instances of generalized versions of the original problem

Condition 2: Overlapping subproblems

I If subproblems need totally different things to be solved,
no need to store their solutions anywhere:
this is a divide-and-conquer algorithm

7 / 8

When to use dynamic programming?

Condition 1: Optimal substructure

I An (optimal) solution of the problem can be efficiently constructed from (optimal)
solutions of its subproblems

I Subproblems are:
I smaller instances of the original problem
I smaller instances of generalized versions of the original problem

Condition 2: Overlapping subproblems

I If subproblems need totally different things to be solved,
no need to store their solutions anywhere:
this is a divide-and-conquer algorithm

7 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

S ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

? ? X ? ? ? ?

1 ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

? ? ? ? X ? ?

1 ? X ? ? ? ?

1 ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

? ? ? ? X ? ?

1 ? ? ? X ? ?

1 ? X ? ? ? ?

1 ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

? X ? ? ? ? F

1 ? ? ? X ? ?

1 ? ? ? X ? ?

1 ? X ? ? ? ?

1 ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 X ? ? ? ? F

1 ? ? ? X ? ?

1 ? ? ? X ? ?

1 ? X ? ? ? ?

1 ? ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 X ? ? ? ? F

1 ? ? ? X ? ?

1 ? ? ? X ? ?

1 ? X ? ? ? ?

1 1 ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 X ? ? ? ? F

1 ? ? ? X ? ?

1 ? ? ? X ? ?

1 2 X ? ? ? ?

1 1 ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 X ? ? ? ? F

1 ? ? ? X ? ?

1 3 ? ? X ? ?

1 2 X ? ? ? ?

1 1 ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 X ? ? ? ? F

1 4 ? ? X ? ?

1 3 ? ? X ? ?

1 2 X ? ? ? ?

1 1 ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 ? ? ? ? F

1 4 ? ? X ? ?

1 3 ? ? X ? ?

1 2 X ? ? ? ?

1 1 ? ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 ? ? ? ? F

1 4 ? ? X ? ?

1 3 ? ? X ? ?

1 2 X ? ? ? ?

1 1 1 ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 ? ? ? ? F

1 4 ? ? X ? ?

1 3 ? ? X ? ?

1 2 0 ? ? ? ?

1 1 1 ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 ? ? ? ? F

1 4 ? ? X ? ?

1 3 3 ? X ? ?

1 2 0 ? ? ? ?

1 1 1 ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 ? ? ? ? F

1 4 7 ? X ? ?

1 3 3 ? X ? ?

1 2 0 ? ? ? ?

1 1 1 ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 ? ? ? F

1 4 7 ? X ? ?

1 3 3 ? X ? ?

1 2 0 ? ? ? ?

1 1 1 ? ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 ? ? ? F

1 4 7 ? X ? ?

1 3 3 ? X ? ?

1 2 0 ? ? ? ?

1 1 1 1 ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 ? ? ? F

1 4 7 ? X ? ?

1 3 3 ? X ? ?

1 2 0 1 ? ? ?

1 1 1 1 ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 ? ? ? F

1 4 7 ? X ? ?

1 3 3 4 X ? ?

1 2 0 1 ? ? ?

1 1 1 1 ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 ? ? ? F

1 4 7 11 X ? ?

1 3 3 4 X ? ?

1 2 0 1 ? ? ?

1 1 1 1 ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 ? ? F

1 4 7 11 X ? ?

1 3 3 4 X ? ?

1 2 0 1 ? ? ?

1 1 1 1 ? ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 ? ? F

1 4 7 11 X ? ?

1 3 3 4 X ? ?

1 2 0 1 ? ? ?

1 1 1 1 1 ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 ? ? F

1 4 7 11 X ? ?

1 3 3 4 X ? ?

1 2 0 1 2 ? ?

1 1 1 1 1 ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 ? ? F

1 4 7 11 X ? ?

1 3 3 4 0 ? ?

1 2 0 1 2 ? ?

1 1 1 1 1 ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 ? ? F

1 4 7 11 0 ? ?

1 3 3 4 0 ? ?

1 2 0 1 2 ? ?

1 1 1 1 1 ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 ? F

1 4 7 11 0 ? ?

1 3 3 4 0 ? ?

1 2 0 1 2 ? ?

1 1 1 1 1 ? ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 ? F

1 4 7 11 0 ? ?

1 3 3 4 0 ? ?

1 2 0 1 2 ? ?

1 1 1 1 1 1 ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 ? F

1 4 7 11 0 ? ?

1 3 3 4 0 ? ?

1 2 0 1 2 3 ?

1 1 1 1 1 1 ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 ? F

1 4 7 11 0 ? ?

1 3 3 4 0 3 ?

1 2 0 1 2 3 ?

1 1 1 1 1 1 ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 ? F

1 4 7 11 0 3 ?

1 3 3 4 0 3 ?

1 2 0 1 2 3 ?

1 1 1 1 1 1 ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 21 F

1 4 7 11 0 3 ?

1 3 3 4 0 3 ?

1 2 0 1 2 3 ?

1 1 1 1 1 1 ?

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 21 F

1 4 7 11 0 3 ?

1 3 3 4 0 3 ?

1 2 0 1 2 3 ?

1 1 1 1 1 1 1

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 21 F

1 4 7 11 0 3 ?

1 3 3 4 0 3 ?

1 2 0 1 2 3 4

1 1 1 1 1 1 1

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 21 F

1 4 7 11 0 3 ?

1 3 3 4 0 3 7

1 2 0 1 2 3 4

1 1 1 1 1 1 1

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 21 F

1 4 7 11 0 3 10

1 3 3 4 0 3 7

1 2 0 1 2 3 4

1 1 1 1 1 1 1

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

Example: path counting

1 0 7 18 18 21 31

1 4 7 11 0 3 10

1 3 3 4 0 3 7

1 2 0 1 2 3 4

1 1 1 1 1 1 1

Count the number of ways to go from S to F

I using only up-moves and right-moves

I not entering a cell with X in it

Solve by dynamic programming

I Solution for a cell with S is 1

I Solution for a cell with X is 0

I Solution for a cell N(x , y) is N(x − 1, y) + N(x , y − 1)

I Possible traversal order: left to right, bottom to top

8 / 8

