

How to Win Coding Competitions: Secrets of Champions

Week 5: Algorithms on Graphs 1
Lecture 6: Introduction to dynamic programming

Maxim Buzdalov Saint Petersburg 2016

$$F_0 = 1$$

$$F_1 = 1$$

$$F_k = F_{k-1} + F_{k-2}$$

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How to compute?

```
int fib(int k) {
    return k <= 1
          ? 1
          : fib(k - 1) + fib(k - 2);
}</pre>
```

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

```
int fib(int k) {
    return k <= 1
    ? 1
    : fib(k - 1) + fib(k - 2);
}</pre>
```

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

```
int fib(int k) {
    return k <= 1
    ? 1
    : fib(k - 1) + fib(k - 2);
}</pre>
```

How large is T_k ?

▶ Assume all $\Theta(1) = 1$

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

```
int fib(int k) {
    return k <= 1
      ? 1
      : fib(k - 1) + fib(k - 2);
}</pre>
```

- ▶ Assume all $\Theta(1) = 1$
- $T_k + 1 = (T_{k-1} + 1) + (T_{k-2} + 1)$

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

```
\begin{array}{ll} \mbox{int } \mbox{ fib (int } \mbox{ k) } \{ \\ \mbox{ return } \mbox{ k } <= 1 \\ \mbox{ ? 1 } \\ \mbox{ : fib (k - 1) + fib (k - 2);} \\ \} \end{array}
```

- ▶ Assume all $\Theta(1) = 1$
- $T_k + 1 = (T_{k-1} + 1) + (T_{k-2} + 1)$
- $ightharpoonup T_k = 2 \cdot F_k 1$

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

```
\begin{array}{ll} \mbox{int fib(int k) } \{ \\ \mbox{return k} <= 1 \\ \mbox{? 1} \\ \mbox{: fib(k-1) + fib(k-2);} \\ \} \end{array}
```

- ▶ Assume all $\Theta(1) = 1$
- $T_k + 1 = (T_{k-1} + 1) + (T_{k-2} + 1)$
- $T_k = 2 \cdot F_k 1 = \left[\frac{1.618...^k}{\sqrt{5}} \right] \cdot 2 1$

$$F_0 = 1$$

 $F_1 = 1$
 $F_k = F_{k-1} + F_{k-2}$

How fast is it?

$$T_0 = \Theta(1)$$

 $T_1 = \Theta(1)$
 $T_k = \Theta(1) + T_{k-1} + T_{k-2}$

How to compute?

```
int fib(int k) {
    return k <= 1
      ? 1
      : fib(k - 1) + fib(k - 2);
}</pre>
```

- ▶ Assume all $\Theta(1) = 1$
- $T_k + 1 = (T_{k-1} + 1) + (T_{k-2} + 1)$
- $T_k = 2 \cdot F_k 1 = \left[\frac{1.618...^k}{\sqrt{5}} \right] \cdot 2 1$
- ightharpoonup That is, exponentially slow in k

► The graph is acyclic

- ► The graph is acyclic
- ► Topological sort is possible

- ► The graph is acyclic
- ► Topological sort is possible
- Possible to evaluate each node once in the reversed order of topological sort

- ► The graph is acyclic
- ► Topological sort is possible
- Possible to evaluate each node once in the reversed order of topological sort

Dynamic programming

- ► The graph is acyclic
- ► Topological sort is possible
- Possible to evaluate each node once in the reversed order of topological sort

Dynamic programming

▶ Solves this problem in $\Theta(k)$

No graph is typically needed

▶ If you know there are no cycles, just store the evaluated values

No graph is typically needed

▶ If you know there are no cycles, just store the evaluated values

```
int cache[MAX_N]; // add storage for the values
int fib(int k) {
   if (cache[k] != 0) { // check if the value has been computed
        return cache[k];
   }
   return cache[k] = k <= 1 // compute and store the value
   ? 1
        : fib(k - 1) + fib(k - 2);
}</pre>
```

No graph is typically needed

- ▶ If you know there are no cycles, just store the evaluated values
- Memoization

```
int cache[MAX_N]; // add storage for the values
int fib(int k) {
    if (cache[k] != 0) { // check if the value has been computed
        return cache[k];
    }
    return cache[k] = k <= 1 // compute and store the value
        ? 1
        : fib(k - 1) + fib(k - 2);
}</pre>
```

- ▶ You can use one of possible topological sort orders if you know it
- ► The Fibonacci example: go from 0 to k
- ► The "top-down" dynamic programming
 - Compute values by running a function on dependencies

- ▶ You can use one of possible topological sort orders if you know it
- ▶ The Fibonacci example: go from 0 to k
- ► The "top-down" dynamic programming
 - ► Compute values by running a function on dependencies

```
int fib(int k) {
    int values[k + 1]; // the storage for the values
    values[0] = values[1] = 1; // initial values
    for (int i = 2; i <= k; ++i) {
        values[i] = values[i - 1] + values[i - 2]; // top-down
    }
    return values[k];
}</pre>
```

- ▶ You can use one of possible topological sort orders if you know it
- ▶ The Fibonacci example: go from 0 to k
- ► The "bottom-up" dynamic programming
 - ▶ When a value is computed, update values depending on it

- ► You can use one of possible topological sort orders if you know it
- ► The Fibonacci example: go from 0 to k
- ► The "bottom-up" dynamic programming
 - ▶ When a value is computed, update values depending on it

```
int fib(int k) {
   int values[k + 2]; // the storage for the values, initially zeros
   for (int i = 0; i < k; ++i) {
      if (i <= 1) {
          values[i] = 1;
      }
      values[i + 1] += values[i]; // update one dependency
      values[i + 2] += values[i]; // update another dependency
   }
   return values[k];
}</pre>
```

Condition 1: Optimal substructure

► An (optimal) solution of the problem can be efficiently constructed from (optimal) solutions of its subproblems

Condition 1: Optimal substructure

- ► An (optimal) solution of the problem can be efficiently constructed from (optimal) solutions of its subproblems
- ► Subproblems are:
 - smaller instances of the original problem
 - smaller instances of generalized versions of the original problem

Condition 1: Optimal substructure

- ► An (optimal) solution of the problem can be efficiently constructed from (optimal) solutions of its subproblems
- ► Subproblems are:
 - smaller instances of the original problem
 - smaller instances of generalized versions of the original problem

Condition 2: Overlapping subproblems

► If subproblems need totally different things to be solved, no need to store their solutions anywhere: this is a divide-and-conquer algorithm

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
S	?	?	?	?	?	?

- ► using only up-moves and right-moves
- ▶ not entering a cell with X in it

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
S	?	?	?	?	?	?

Solve by dynamic programming

- ► using only up-moves and right-moves
- ▶ not entering a cell with X in it

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
S	?	?	?	?	?	?

Solve by dynamic programming

▶ Solution for a cell with S is 1

- ► using only up-moves and right-moves
- ▶ not entering a cell with X in it

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
S	?	?	?	?	?	?

Solve by dynamic programming

- ▶ Solution for a cell with S is 1
- ► Solution for a cell with X is 0

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
S	?	?	?	?	?	?

Count the number of ways to go from S to F

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

Solve by dynamic programming

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
S	?	?	?	?	?	?

Count the number of ways to go from S to F

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

Solve by dynamic programming

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
?	?	Χ	?	?	?	?
1	?	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
?	?	?	?	Χ	?	?
1	?	Χ	?	?	?	?
1	?	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

?	Χ	?	?	?	?	F
?	?	?	?	Χ	?	?
1	?	?	?	Χ	?	?
1	?	Χ	?	?	?	?
1	?	?	?	?	?	?

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

?	Χ	?	?	?	?	F
1	?	?	?	Χ	?	?
1	?	?	?	Χ	?	?
1	?	Χ	?	?	?	?
1	?	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	Χ	?	?	?	?	F
1	?	?	?	Χ	?	?
1	?	?	?	Χ	?	?
1	?	Χ	?	?	?	?
1	?	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	Χ	?	?	?	?	F
1	?	?	?	Χ	?	?
1	?	?	?	Χ	?	?
1	?	Χ	?	?	?	?
1	1	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ▶ Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	Χ	?	?	?	?	F
1	?	?	?	Χ	?	?
1	?	?	?	Χ	?	?
1	2	Χ	?	?	?	?
1	1	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	Χ	?	?	?	?	F
1	?	?	?	Χ	?	?
1	3	?	?	Χ	?	?
1	2	Χ	?	?	?	?
1	1	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	Χ	?	?	?	?	F
1	4	?	?	Χ	?	?
1	3	?	?	Χ	?	?
1	2	Χ	?	?	?	?
1	1	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	?	?	?	?	F
1	4	?	?	Χ	?	?
1	3	?	?	Χ	?	?
1	2	Χ	?	?	?	?
1	1	?	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	?	?	?	?	F
1	4	?	?	Χ	?	?
1	3	?	?	Χ	?	?
1	2	Χ	?	?	?	?
1	1	1	?	?	?	?

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	?	?	?	?	F
1	4	?	?	Χ	?	?
1	3	?	?	Χ	?	?
1	2	0	?	?	?	?
1	1	1	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	?	?	?	?	F
1	4	?	?	Χ	?	?
1	3	3	?	Χ	?	?
1	2	0	?	?	?	?
1	1	1	?	?	?	?

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	?	?	?	?	F
1	4	7	?	Χ	?	?
1	3	3	?	Χ	?	?
1	2	0	?	?	?	?
1	1	1	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	?	?	?	F
1	4	7	?	Χ	?	?
1	3	3	?	Χ	?	?
1	2	0	?	?	?	?
1	1	1	?	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	?	?	?	F
1	4	7	?	Χ	?	?
1	3	3	?	Χ	?	?
1	2	0	?	?	?	?
1	1	1	1	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	?	?	?	F
1	4	7	?	Χ	?	?
1	3	3	?	Χ	?	?
1	2	0	1	?	?	?
1	1	1	1	?	?	?

- ▶ using only up-moves and right-moves
- ► not entering a cell with X in it

- ▶ Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	?	?	?	F
1	4	7	?	Χ	?	?
1	3	3	4	Χ	?	?
1	2	0	1	?	?	?
1	1	1	1	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	?	?	?	F
1	4	7	11	Χ	?	?
1	3	3	4	Χ	?	?
1	2	0	1	?	?	?
1	1	1	1	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	?	?	F
1	4	7	11	Χ	?	?
1	3	3	4	Χ	?	?
1	2	0	1	?	?	?
1	1	1	1	?	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	?	?	F
1	4	7	11	Χ	?	?
1	3	3	4	Χ	?	?
1	2	0	1	?	?	?
1	1	1	1	1	?	?

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	?	?	F
1	4	7	11	Χ	?	?
1	3	3	4	Χ	?	?
1	2	0	1	2	?	?
1	1	1	1	1	?	?

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	?	?	F
1	4	7	11	Χ	?	?
1	3	3	4	0	?	?
1	2	0	1	2	?	?
1	1	1	1	1	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	?	?	F
1	4	7	11	0	?	?
1	3	3	4	0	?	?
1	2	0	1	2	?	?
1	1	1	1	1	?	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	?	F
1	4	7	11	0	?	?
1	3	3	4	0	?	?
1	2	0	1	2	?	?
1	1	1	1	1	?	?

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	?	F
1	4	7	11	0	?	?
1	3	3	4	0	?	?
1	2	0	1	2	?	?
1	1	1	1	1	1	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	?	F
1	4	7	11	0	?	?
1	3	3	4	0	?	?
1	2	0	1	2	3	?
1	1	1	1	1	1	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	?	F
1	4	7	11	0	?	?
1	3	3	4	0	3	?
1	2	0	1	2	3	?
1	1	1	1	1	1	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	?	F
1	4	7	11	0	3	?
1	3	3	4	0	3	?
1	2	0	1	2	3	?
1	1	1	1	1	1	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	21	F
1	4	7	11	0	3	?
1	3	3	4	0	3	?
1	2	0	1	2	3	?
1	1	1	1	1	1	?

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	21	F
1	4	7	11	0	3	?
1	3	3	4	0	3	?
1	2	0	1	2	3	?
1	1	1	1	1	1	1

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	21	F
1	4	7	11	0	3	?
1	3	3	4	0	3	?
1	2	0	1	2	3	4
1	1	1	1	1	1	1

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	21	F
1	4	7	11	0	3	?
1	3	3	4	0	3	7
1	2	0	1	2	3	4
1	1	1	1	1	1	1

- using only up-moves and right-moves
- ► not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	21	F
1	4	7	11	0	3	10
1	3	3	4	0	3	7
1	2	0	1	2	3	4
1	1	1	1	1	1	1

- using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top

1	0	7	18	18	21	31
1	4	7	11	0	3	10
1	3	3	4	0	3	7
1	2	0	1	2	3	4
1	1	1	1	1	1	1

- ▶ using only up-moves and right-moves
- ▶ not entering a cell with X in it

- ► Solution for a cell with S is 1
- ► Solution for a cell with X is 0
- ► Solution for a cell N(x, y) is N(x 1, y) + N(x, y 1)
- ▶ Possible traversal order: left to right, bottom to top