

How to Win Coding Competitions: Secrets of Champions

Week 6: Algorithms on Graphs 2 Lecture 5: All Pairs Shortest Paths

Maxim Buzdalov Saint Petersburg 2016

▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation
- ▶ If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
 - ▶ |V| times $O(|V|^2)$, so $O(|V|^3)$ in total

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation
- ▶ If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
 - ▶ |V| times $O(|V|^2)$, so $O(|V|^3)$ in total
- ▶ But there exists the Floyd-Warshall algorithm, which is:

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation
- ▶ If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
 - ▶ |V| times $O(|V|^2)$, so $O(|V|^3)$ in total
- ▶ But there exists the Floyd-Warshall algorithm, which is:
 - ▶ also $O(|V|^3)$

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation
- ▶ If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
 - ▶ |V| times $O(|V|^2)$, so $O(|V|^3)$ in total
- ▶ But there exists the Floyd-Warshall algorithm, which is:
 - ▶ also $O(|V|^3)$
 - ▶ but faster

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation
- ▶ If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
 - ▶ |V| times $O(|V|^2)$, so $O(|V|^3)$ in total
- ▶ But there exists the Floyd-Warshall algorithm, which is:
 - ▶ also $O(|V|^3)$
 - ▶ but faster
 - and simpler

- ▶ Even if considering only path lengths, this is $\Theta(|V|^2)$ numbers
- ► Let's use the adjacency matrix representation
- ▶ If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
 - ▶ |V| times $O(|V|^2)$, so $O(|V|^3)$ in total
- ▶ But there exists the Floyd-Warshall algorithm, which is:
 - ightharpoonup also $O(|V|^3)$
 - ▶ but faster
 - ► and simpler
 - ▶ and does not require non-negative edge lengths!

▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between

- ▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between
- ▶ $D_0[i][j]$: just the contents of the adjacency matrix

- ▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between
- ▶ $D_0[i][j]$: just the contents of the adjacency matrix
- ▶ Assume we computed all $D_{k-1}[i][j]$. Then:

- ▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between
- ▶ $D_0[i][j]$: just the contents of the adjacency matrix
- ▶ Assume we computed all $D_{k-1}[i][j]$. Then:
 - ▶ By definition, $D_k[i][j] \leftarrow \min(D_{k-1}[i][j], D_{k-1}[i][k] + D_k[k][k] + D_{k-1}[k][j])$

- ▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between
- ▶ $D_0[i][j]$: just the contents of the adjacency matrix
- ▶ Assume we computed all $D_{k-1}[i][j]$. Then:
 - ▶ By definition, $D_k[i][j] \leftarrow \min(D_{k-1}[i][j], D_{k-1}[i][k] + D_k[k][k] + D_{k-1}[k][j])$
 - ▶ If $D_{k-1}[k][k] < 0$, then $D_k[k][k] = -\infty$
 - ▶ so is $D_k[i][j]$ unless $D_{k-1}[i][k] = \infty$ or $D_{k-1}[k][j] = \infty$

- ▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between
- ▶ $D_0[i][j]$: just the contents of the adjacency matrix
- ▶ Assume we computed all $D_{k-1}[i][j]$. Then:
 - ▶ By definition, $D_k[i][j] \leftarrow \min(D_{k-1}[i][j], D_{k-1}[i][k] + D_k[k][k] + D_{k-1}[k][j])$
 - ▶ If $D_{k-1}[k][k] < 0$, then $D_k[k][k] = -\infty$
 - so is $D_k[i][j]$ unless $D_{k-1}[i][k] = \infty$ or $D_{k-1}[k][j] = \infty$
 - ▶ If $D_{k-1}[k][k] = 0$, then $D_k[i][j] \leftarrow D_{k-1}[i][k] + D_{k-1}[k][j]$
 - enables dynamic programming

- ▶ $D_k[i][j]$: the length of the shortest path from i to j using only vertices from [1; k] in between
- ▶ $D_0[i][j]$: just the contents of the adjacency matrix
- ▶ Assume we computed all $D_{k-1}[i][j]$. Then:
 - ▶ By definition, $D_k[i][j] \leftarrow \min(D_{k-1}[i][j], D_{k-1}[i][k] + D_k[k][k] + D_{k-1}[k][j])$
 - ▶ If $D_{k-1}[k][k] < 0$, then $D_k[k][k] = -\infty$
 - so is $D_k[i][j]$ unless $D_{k-1}[i][k] = \infty$ or $D_{k-1}[k][j] = \infty$
 - ▶ If $D_{k-1}[k][k] = 0$, then $D_k[i][j] \leftarrow D_{k-1}[i][k] + D_{k-1}[k][j]$
 - ► enables dynamic programming
- ▶ It never hurts if we use $D_k[i][k]$ instead of $D_{k-1}[i][k]$, same for [k][j]
 - ▶ So we can happily use a single D[][] array for the entire computation!

```
Version for non-negative cycles
procedure FLOYDWARSHALL(V, E)
    N \leftarrow |V|, A \leftarrow adjacency matrix of \langle V, E \rangle
    for k from 1 to N do
        for i from 1 to N do
            for i from 1 to N do
                A[i][j] \leftarrow \min(A[i][j], A[i][k] + A[k][j])
            end for
        end for
    end for
end procedure
```

```
Version supporting negative cycles
procedure FLOYDWARSHALL(V, E)
    N \leftarrow |V|, A \leftarrow adjacency matrix of \langle V, E \rangle
    for k from 1 to N do
        for i from 1 to N do
            if A[i][i] < 0 then A[i][i] \leftarrow -\infty end if
            for i from 1 to N do
                if i \neq j and A[i][k] + A[k][j] < \infty then
                    A[i][i] \leftarrow \min(A[i][i], A[i][k] + A[k][i])
                 end if
            end for
        end for
    end for
end procedure
```

How to restore the actual paths with Floyd-Warshall?

- ▶ $B_k[i][j]$: what vertex to go in the shortest path from i to j using vertices in [1; k]
- ▶ Use a single B[i][j] for the entire run, similar to A[i][j]
- ▶ On update of A[i][j] by A[i][k] + A[k][j], also set B[i][j] to B[i][k]

How to restore the actual paths with Floyd-Warshall?

- ▶ $B_k[i][j]$: what vertex to go in the shortest path from i to j using vertices in [1; k]
- ▶ Use a single B[i][j] for the entire run, similar to A[i][j]
- ▶ On update of A[i][j] by A[i][k] + A[k][j], also set B[i][j] to B[i][k]

How to count the number of shortest paths?

- $ightharpoonup C_k[i][j]$: number of shortest paths from i to j using vertices in [1; k]
- ▶ Use a single C[i][j] for the entire run, similar to A[i][j]
- ▶ When A[i][j] is reset to a new value, set $C[i][j] \leftarrow 0$
- ▶ If A[i][j] = A[i][k] + A[k][j], set $C[i][j] \leftarrow C[i][j] + C[i][k] \cdot C[k][j]$

► This was the last lecture of the course

- ► This was the last lecture of the course
- ► Good luck!

- ► This was the last lecture of the course
- ► Good luck!
 - ► On the course exam

- ► This was the last lecture of the course
- ► Good luck!
 - ► On the course exam
 - ► In programming competitions

- ► This was the last lecture of the course
- ► Good luck!
 - ► On the course exam
 - ► In programming competitions
 - ► ...and wishing you Correct, Efficient and Happy Programming!

- ► This was the last lecture of the course
- ► Good luck!
 - ► On the course exam
 - ► In programming competitions
 - ► ... and wishing you Correct, Efficient and Happy Programming!

The course team