
How to Win Coding Competitions: Secrets of Champions

Week 6: Algorithms on Graphs 2
Lecture 5: All Pairs Shortest Paths

Maxim Buzdalov
Saint Petersburg 2016

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation

I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex
I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:

I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)

I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster

I and simpler
I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler

I and does not require non-negative edge lengths!

2 / 7

All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!

2 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞
I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]

I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞
I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]

I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix

I Assume we computed all Dk−1[i][j]. Then:
I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞
I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]

I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞
I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]

I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])

I If Dk−1[k][k] < 0, then Dk [k][k] = −∞
I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞

I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]
I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞

I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]
I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞
I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]

I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm

Algorithm idea:

I Dk [i][j]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i][j]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i][j]. Then:

I By definition, Dk [i][j]← min(Dk−1[i][j],Dk−1[i][k] + Dk [k][k] + Dk−1[k][j])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i][j] unless Dk−1[i][k] = ∞ or Dk−1[k][j] = ∞
I If Dk−1[k][k] = 0, then Dk [i][j]← Dk−1[i][k] + Dk−1[k][j]

I enables dynamic programming

I It never hurts if we use Dk [i][k] instead of Dk−1[i][k], same for [k][j]
I So we can happily use a single D[][] array for the entire computation!

3 / 7

Floyd-Warshall algorithm implementation

Version for non-negative cycles

procedure FloydWarshall(V , E)
N ← |V |, A← adjacency matrix of 〈V ,E 〉
for k from 1 to N do

for i from 1 to N do
for j from 1 to N do

A[i][j]← min(A[i][j],A[i][k] + A[k][j])
end for

end for
end for

end procedure

4 / 7

Floyd-Warshall algorithm implementation

Version supporting negative cycles

procedure FloydWarshall(V , E)
N ← |V |, A← adjacency matrix of 〈V ,E 〉
for k from 1 to N do

for i from 1 to N do
if A[i][i] < 0 then A[i][i]← −∞ end if
for j from 1 to N do

if i 6= j and A[i][k] + A[k][j] <∞ then
A[i][j]← min(A[i][j],A[i][k] + A[k][j])

end if
end for

end for
end for

end procedure

5 / 7

Miscellaneous properties of Floyd-Warshall

How to restore the actual paths with Floyd-Warshall?

I Bk [i][j]: what vertex to go in the shortest path from i to j using vertices in [1; k]

I Use a single B[i][j] for the entire run, similar to A[i][j]

I On update of A[i][j] by A[i][k] + A[k][j], also set B[i][j] to B[i][k]

How to count the number of shortest paths?

I Ck [i][j]: number of shortest paths from i to j using vertices in [1; k]

I Use a single C [i][j] for the entire run, similar to A[i][j]

I When A[i][j] is reset to a new value, set C [i][j]← 0

I If A[i][j] = A[i][k] + A[k][j], set C [i][j]← C [i][j] + C [i][k] · C [k][j]

6 / 7

Miscellaneous properties of Floyd-Warshall

How to restore the actual paths with Floyd-Warshall?

I Bk [i][j]: what vertex to go in the shortest path from i to j using vertices in [1; k]

I Use a single B[i][j] for the entire run, similar to A[i][j]

I On update of A[i][j] by A[i][k] + A[k][j], also set B[i][j] to B[i][k]

How to count the number of shortest paths?

I Ck [i][j]: number of shortest paths from i to j using vertices in [1; k]

I Use a single C [i][j] for the entire run, similar to A[i][j]

I When A[i][j] is reset to a new value, set C [i][j]← 0

I If A[i][j] = A[i][k] + A[k][j], set C [i][j]← C [i][j] + C [i][k] · C [k][j]

6 / 7

Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam
I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

Thank you for listening!

I This was the last lecture of the course

I Good luck!
I On the course exam
I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam
I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam

I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam
I In programming competitions

I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam
I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam
I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team

7 / 7

