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All Pairs Shortest Path Problem

Problem: given a graph G = 〈V ,E 〉, find shortest paths
between all pairs of vertices v1, v2 ∈ V

I Even if considering only path lengths, this is Θ(|V |2) numbers

I Let’s use the adjacency matrix representation
I If edge lengths are non-negative, run the Dijkstra algorithm from each vertex

I |V | times O(|V |2), so O(|V |3) in total

I But there exists the Floyd-Warshall algorithm, which is:
I also O(|V |3)
I but faster
I and simpler
I and does not require non-negative edge lengths!
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Floyd-Warshall algorithm

Algorithm idea:

I Dk [i ][j ]: the length of the shortest path from i to j
using only vertices from [1; k] in between

I D0[i ][j ]: just the contents of the adjacency matrix
I Assume we computed all Dk−1[i ][j ]. Then:

I By definition, Dk [i ][j ]← min(Dk−1[i ][j ],Dk−1[i ][k] + Dk [k][k] + Dk−1[k][j ])
I If Dk−1[k][k] < 0, then Dk [k][k] = −∞

I so is Dk [i ][j ] unless Dk−1[i ][k] = ∞ or Dk−1[k][j ] = ∞
I If Dk−1[k][k] = 0, then Dk [i ][j ]← Dk−1[i ][k] + Dk−1[k][j ]

I enables dynamic programming

I It never hurts if we use Dk [i ][k] instead of Dk−1[i ][k], same for [k][j ]
I So we can happily use a single D[][] array for the entire computation!
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Floyd-Warshall algorithm implementation

Version for non-negative cycles

procedure FloydWarshall(V , E )
N ← |V |, A← adjacency matrix of 〈V ,E 〉
for k from 1 to N do

for i from 1 to N do
for j from 1 to N do

A[i ][j ]← min(A[i ][j ],A[i ][k] + A[k][j ])
end for

end for
end for

end procedure
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Floyd-Warshall algorithm implementation

Version supporting negative cycles

procedure FloydWarshall(V , E )
N ← |V |, A← adjacency matrix of 〈V ,E 〉
for k from 1 to N do

for i from 1 to N do
if A[i ][i ] < 0 then A[i ][i ]← −∞ end if
for j from 1 to N do

if i 6= j and A[i ][k] + A[k][j ] <∞ then
A[i ][j ]← min(A[i ][j ],A[i ][k] + A[k][j ])

end if
end for

end for
end for

end procedure
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Miscellaneous properties of Floyd-Warshall

How to restore the actual paths with Floyd-Warshall?

I Bk [i ][j ]: what vertex to go in the shortest path from i to j using vertices in [1; k]

I Use a single B[i ][j ] for the entire run, similar to A[i ][j ]

I On update of A[i ][j ] by A[i ][k] + A[k][j ], also set B[i ][j ] to B[i ][k]

How to count the number of shortest paths?

I Ck [i ][j ]: number of shortest paths from i to j using vertices in [1; k]

I Use a single C [i ][j ] for the entire run, similar to A[i ][j ]

I When A[i ][j ] is reset to a new value, set C [i ][j ]← 0

I If A[i ][j ] = A[i ][k] + A[k][j ], set C [i ][j ]← C [i ][j ] + C [i ][k] · C [k][j ]
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Thank you for listening!

I This was the last lecture of the course
I Good luck!

I On the course exam
I In programming competitions
I . . . and wishing you Correct, Efficient and Happy Programming!

The course team
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