. ° .
e.c.0%0
~.o:o:ofo’
. [] []

L] (]

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 5: Algorithms on Graphs 1
Lecture 4: Depth First Search with Timestamps

Maxim Buzdalov
Saint Petersburg 2016

 ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

2/9

ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tin, Tout < {OO}
A(v) ={u]| (v,u) € E}
t<0
procedure DFS(v)
t«t+1
Tin(v) <t
for u € A(v) do
if Tin(u) = oo then DFS(u) end if
end for
t—t+1
Tout(v) « t
end procedure

2/9

ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t<«0
procedure DFS(v)

t—t+1

Tin(v) <t

for u € A(v) do

if T;n(u) = oo then DFS(u) end if

end for

t—t+1

Tout(v) « t
end procedure

2/9

ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t<0
procedure DFS(v)
t+—t+1 > Incrementing time
Tin(v) <t

for u € A(v) do
if Tin(u) = oo then DFS(u) end if
end for
t—t+1
Tout(v) « t
end procedure

2/9

ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G =(V,E)

Tins Tout < {00} > Tin(v): the time of entering v
A(v) ={u|(v,u) € E} > Tout(v): the time of exiting v
t+0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering

for u € A(v) do
if Tin(u) = oo then DFS(u) end if
end for
t—t+1
Tout(v) « t
end procedure

2/9

332 ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G =(V,E)

Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t+0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering
for u € A(v) do
if T;n(u) = co then DFS(u) end if > Means “not previously entered”
end for
t—t+1
Tout(v) « t

end procedure

2/9

332 ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tin, Tout < {00} > Tin(v): the time of entering v
A(v) ={u]| (v,u) € E} > Tout(v): the time of exiting v
t+0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering
for u € A(v) do
if Tin(u) = oo then DFS(u) end if > Means “not previously entered”
end for
t+—t+1 > Incrementing time
Tout(v) « t

end procedure

2/9

* ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t<0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering
for u € A(v) do
if T;n(u) = co then DFS(u) end if > Means “not previously entered”
end for
t—t+1 > Incrementing time
Tout(v) t > Marking the time of exiting

end procedure

2/9

ITMO UNIVERSITY Example run of the algorithm

3/9

ITMO UNIVERSITY Example run of the algorithm

3/9

ITMO UNIVERSITY Example run of the algorithm

3/9

ITMO UNIVERSITY Example run of the algorithm

3/9

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5

ITMO UNIVERSITY

Example run of the algorithm

Tin=24 E Tout =5

H Tout = 14

ITMO UNIVERSITY

Example run of the algorithm

Tin=24 E Tout =5

G Toth = 15

H Tout = 14

ITMO UNIVERSITY

Example run of the algorithm

Tin=24 E Tout =5

G Toth = 15

H Tout = 14

ITMO UNIVERSITY

Example run of the algorithm

Tgut =6 Tin =128 B Tout = 17

Tin=24 E Tout =5

G Toth = 15

H Tout = 14

ITMO UNIVERSITY

Example run of the algorithm

VA 7o = 18

Tgut =6 Tin =128 B Tout = 17

Tin=24 E Tout =5

G Toth = 15

H Tout = 14

ITMO UNIVERSITY Example run of the algorithm

» Important timestamp property:
A is ancestor of B <
T|n(A) < Tln(B) < Tout(B) < Tout(A)

VA 7o = 18

Tgut =6 Tin =128 B Tout = 17

Tin=24 E Tout =5

ITMO UNIVERSITY Example run of the algorithm

» Important timestamp property:
A is ancestor of B &
T|n(A) < Tln(B) < Tout(B) < Tout(A)
» This is a fast way to determine
whether a vertex is an ancestor of
another one

Toth =17

Tin=24 E Tout =5

7—out =15

Tout = 14

ITMO UNIVERSITY Example run of the algorithm

» Important timestamp property:
A is ancestor of B &
T|n(A) < Tln(B) < Tout(B) < Tout(A)
» This is a fast way to determine
whether a vertex is an ancestor of
another one

Toth =17

Tin =4 E Tout =5
» Some examples follow
where this idea is crucial

7—out =15

Tout = 14

** |ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

4/9

** |ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:

4/9

ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:
» LCAA,J)=A

Tout = 16

4/9

ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:
» LCAA,J)=A
» LCA(E,H)=D

Tout = 16

4/9

* ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:

Tout =18
» LCA(A,J)=A
» LCA(E,H) =D
» LCA(C,E)=B

Tout = 16

4/9

* ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:

Tout = 18
> LCA(A.J) = A
> LCA(E,H) = D
» LCA(C,E) = B
Tout:]-7 4 I_CA(C~7 G):A

Tout = 16

4/9

* ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:

Tout = 18
> LCA(A.J) = A
> LCA(E,H) = D
» LCA(C,E) = B
Tout:]-7 4 I_CA(C~7 G):A

» Algorithm for answering LCA(x, y):

» b: the best ancestor (initially: root)
» For every vertex z, test if it is an

Tour = 16 ancestor for both x and y
» If it is, and b is an ancestor of z, then
Tout = 11 b+ z

4/9

* ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Examples:

Tout = 18
> LCA(A.J) = A
> LCA(E,H) = D
» LCA(C,E) = B
Tout:]-7 4 I_CA(C~7 G):A

» Algorithm for answering LCA(x, y):

» b: the best ancestor (initially: root)
» For every vertex z, test if it is an

Tour = 16 ancestor for both x and y
» If it is, and b is an ancestor of z, then
Tout = 11 b+ z

» Runtime: ©(|V/]). Can we do it faster?

4/9

ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

Tout = 16

4/9

ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

» Example: d[F][0]
G Tout =17

Tout = 16

4/9

ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

» Example: d[F][1]

Tout = 16

4/9

ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

» Example: d[F][2]

Tout = 16

4/9

** |ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

G procedure FiLLHoOPS(V)
Tout =17
for ve Vdo

d[v][0] = parent of v

end for

for i € [1;log, |V]] do
Tout =16 for v € V do

d[v[i] = didQvIli — 10][7 - 1]
Tow = 11 end for
end for

end procedure

4/9

** |ITMO UNIVERSITY Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

G Tow =17 procedure FiLLHoOPS(V)

for v e V do
d[v][0] = parent of v
end for
for i € [1;log, |V]] do
Tout =16 for v € V do
d[vli = dldMvIli — 10— 1]
Tow = 11 end for
end for

end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

* ITMO UNIVERSITY

Least Common Ancestor |

Example of working with timestamps: finding Least Common Ancestors in trees

Tout = 16

» Path compression (“binary hops”):
» d[v][0] = parent of v
» d[v][i] = 2/-th vertex towards root

procedure LCA(a, b)
if ISANCESTOR(a, b) then return a end if
if ISANCESTOR(b, a) then return b end if
for i from log, |V| down to 1 do
if not ISANCESTOR(d[a][/], b) then
a + d[a][/]
end if
end for
return d[a][0]
end procedure

4/9

ITMO UNIVERSITY Edge-biconnectivity

An undirected graph is edge-biconnected if the following holds:

> If any edge is removed, the graph will remain connected

5/9

ITMO UNIVERSITY Edge-biconnectivity

An undirected graph is edge-biconnected if the following holds:
> If any edge is removed, the graph will remain connected
A bridge is an edge with the following property:

» If this edge is removed, the graph will no longer be connected

5/9

ITMO UNIVERSITY Edge-biconnectivity

An undirected graph is edge-biconnected if the following holds:
> If any edge is removed, the graph will remain connected
A bridge is an edge with the following property:
» If this edge is removed, the graph will no longer be connected

A graph can be decomposed into edge-biconnected components and bridges.
How to do it faster than in ©(|E|?)?

5/9

ITMO UNIVERSITY Edge-biconnectivity

An undirected graph is edge-biconnected if the following holds:
> If any edge is removed, the graph will remain connected
A bridge is an edge with the following property:

» If this edge is removed, the graph will no longer be connected

A graph can be decomposed into edge-biconnected components and bridges.
How to do it faster than in ©(|E|?)?

5/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF

» B is reachable from F without this
edge: BF is not a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB

» A is not reachable from B without
this edge: AB is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
» Tmin(u) > Tin(v): (v, u) is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
» Tmin(u) > Tin(v): (v, u) is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
» Tmin(u) > Tin(v): (v, u) is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
» Tmin(u) > Tin(v): (v, u) is a bridge

Tin=3

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
» Tmin(u) > Tin(v): (v, u) is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

6/9

ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

33" ITMO UNIVERSITY Bridge detection

» Consider an edge BF
» B is reachable from F without this
edge: BF is not a bridge
» Consider an edge AB
» A is not reachable from B without
this edge: AB is a bridge
» An edge XY is a bridge, if X is not
reachable from Y without this edge
» Let's track, for each vertex v,
Tmin: the minimum T;, of a vertex
reachable from v without following
uplinks
> Tmin(t) > Tin(v): (v, u) is a bridge

ITMO UNIVERSITY

G =(V,E)
Tim 7—min <~ {OO}
A(v) ={u| (v,u) € E}
t<0
procedure BRIDGES(v, p = —1)
t+ t+1; Tin(v) < t, Tmin(v) < t
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
BRIDGES(u, v)
Tmin(V) — min(Tmin(V)7 Tmin(u))
if Tin(u) > Tin(v) then
REPORTBRIDGE(v, u)
end if
else
Tmin(V) — min(Tmin(V)> Tmin(u))
end if
end for
end procedure

Algorithm for bridge detection

7/9

ITMO UNIVERSITY Algorithm for bridge detection

G =(V,E)
Tins Tmin < {o0} > Tracking Tpmin instead of Tout
A(v) ={u| (v,u) € E}
t<0
procedure BRIDGES(v, p = —1)
t+ t+1; Tin(v) < t, Tmin(v) < ¢t
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
BRIDGES(u, v)
Tmin(V) — min(Tmin(V)7 Tmin(u))
if Tmin(u) > Tin(v) then
REPORTBRIDGE(v, u)
end if
else
Tmin(V) — min(Tmin(V)> Tmin(u))
end if
end for
end procedure

7/9

' ITMO UNIVERSITY Algorithm for bridge detection

G=(V,E)

Tin, Tmin < {00} > Tracking Tmin instead of Tout
A(v) ={u|(v,u) € E}

t<0

procedure BRIDGES(v, p = —1) > Extra parameter: the parent of v

t+ t+1; Tin(v) < t, Tmin(v) < ¢t
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
BRIDGES(u, v)
Tmin(V) — min(Tmin(V)7 Tmin(u))
if Tmin(u) > Tin(v) then
REPORTBRIDGE(v, u)
end if
else
Tmin(V) — min(Tmin(V)> Tmin(u))
end if
end for
end procedure

7/9

* ITMO UNIVERSITY

G =(V,E)
Tim 7—min <~ {OO}
A(v) ={u| (v,u) € E}
t<0
procedure BRIDGES(v, p = —1)
t+ t+1; Tin(v) < t, Tmin(v) < ¢t
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
BRIDGES(u, v)
Tmin(v) — min(Tmin(V)7 Tmin(u))
if Tmin(u) > Tin(v) then
REPORTBRIDGE(v, u)
end if
else
Tmin(V) — min(Tmin(V)> Tmin(u))
end if
end for
end procedure

Algorithm for bridge detection

> Tracking Tin instead of Tout

> Extra parameter: the parent of v

> Updating Tmin by Tmin of a descendant

7/9

* ITMO UNIVERSITY

G =(V,E)
Tim 7—min <~ {OO}
A(v) ={u| (v,u) € E}
t<0
procedure BRIDGES(v, p = —1)
t+ t+1; Tin(v) < t, Tmin(v) < ¢t
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
BRIDGES(u, v)
Tmin(V) — min(Tmin(V)7 Tmin(u))
if Tmin(u) > Tin(v) then
REPORTBRIDGE(v, u)
end if
else
Tmin(V) — min(Tmin(V)> Tmin(u))
end if
end for
end procedure

Algorithm for bridge detection

> Tracking Tin instead of Tout

> Extra parameter: the parent of v

> Updating Tmin by Tmin of a descendant

> Updating Tin by Tpmin of other vertex

7/9

ITMO UNIVERSITY Vertex-biconnectivity

An undirected graph is vertex-biconnected if the following holds:

» If any vertex is removed, the graph will remain connected

8/9

ITMO UNIVERSITY Vertex-biconnectivity

An undirected graph is vertex-biconnected if the following holds:
> If any vertex is removed, the graph will remain connected
An articulation point is a vertex with the following property:

» If this vertex is removed, the graph will no longer be connected

8/9

ITMO UNIVERSITY Vertex-biconnectivity

An undirected graph is vertex-biconnected if the following holds:
» If any vertex is removed, the graph will remain connected
An articulation point is a vertex with the following property:
» If this vertex is removed, the graph will no longer be connected

A graph can be decomposed into vertex-biconnected components, connected by
articulation points.
How to do it faster than in ©(|V| - |E|)?

8/9

ITMO UNIVERSITY Vertex-biconnectivity

An undirected graph is vertex-biconnected if the following holds:
> If any vertex is removed, the graph will remain connected
An articulation point is a vertex with the following property:

» If this vertex is removed, the graph will no longer be connected

A graph can be decomposed into vertex-biconnected components, connected by
articulation points.

How to do it faster than in ©(|V| - |E|)?

8/9

ITMO UNIVERSITY Algorithm for articulation point detection

G =(V,E)
Tim 7—min <~ {OO}
A(v) ={u| (v,u) € E}
t<0
procedure ARTICULATION(v, p = —1)
t+ t+1; Tin(v) < t; Tmin(v) < t; ch+ 0
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
ch<+ ch+1
ARTICULATION(u, v)
Tmin(v) — min(Tmin(V% Tmin(u))
if Tmin(u) > Tin(v) and p # —1 then
REPORTARTICULATION(V)
end if
else
Tin(v) <= min(Tin(v), Tmin(u))
end if
end for
if p=—1 and ch > 1 then REPORTARTICULATION(v) end if
end procedure

9/9

* ITMO UNIVERSITY

Algorithm for articulation point detection

G=(V,E)
Tim 7—min <~ {OO}
A(v) ={u| (v,u) € E}
t<«0
procedure ARTICULATION(v, p = —1)
t+ t+1; Tin(v) < t; Tmin(v) < t; ch+ 0
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
ch<+ ch+1
ARTICULATION(u, v)
Tmin(v) — min(Tmin(V% Tmin(u))
if Tmin(u) > Tin(v) and p # —1 then
REPORTARTICULATION(V)
end if
else
Tin(v) <= min(Tin(v), Tmin(u))
end if
end for
if p=—1 and ch > 1 then REPORTARTICULATION(v) end if

end procedure

> Now we also track children count

9/9

* ITMO UNIVERSITY

Algorithm for articulation point detection

G=(V,E)
Tim 7—min <~ {OO}
A(v) ={u| (v,u) € E}
t<«0
procedure ARTICULATION(v, p = —1)
t+ t+1; Tin(v) < t; Tmin(v) < t; ch+ 0
for u € A(v) do
if p = u then continue end if
if Tin(u) = oo then
ch<+ ch+1
ARTICULATION(u, v)
Tmin(v) — min(Tmin(V% Tmin(u))
if Tmin(u) > Tin(v) and p # —1 then
REPORTARTICULATION(V)
end if
else
Tin(v) <= min(Tin(v), Tmin(u))
end if
end for
if p=—1 and ch > 1 then REPORTARTICULATION(v) end if

end procedure

> Now we also track children count

> ...and incrementing it on every child

9/9

Algorithm for articulation point detection

* ITMO UNIVERSITY

G=(V,E)
Tim 7—min <~ {OO}
A(v) = {u | (v,u) € E}
t<0
procedure ARTICULATION(v, p = —1)
t+ t+1; Tin(v) < t; Tmin(v) < t; ch+ 0 > Now we also track children count
for u € A(v) do
if p = u then continue end if

if Tin(u) = oo then
ch+ ch+1 > ...and incrementing it on every child
ARTICULATION(u, v)
Tmin(v) — min(Tmin(V% Tmin(u))
> Now inequality is non-strict, and root is not considered

if Tin(u) > Tin(v) and p # —1 then
REPORTARTICULATION(V)
end if
else
Tin(v) <= min(Tin(v), Tmin(u))
end if

end for
if p=—1 and ch > 1 then REPORTARTICULATION(v) end if

end procedure

Algorithm for articulation point detection

* ITMO UNIVERSITY

G=(V,E)
Tim 7—min <~ {OO}
A(v) = {u | (v,u) € E}
t<0
procedure ARTICULATION(v, p = —1)
t+ t+1; Tin(v) < t; Tmin(v) < t; ch+ 0 > Now we also track children count
for u € A(v) do
if p = u then continue end if

if Tin(u) = oo then
ch+ ch+1 > ...and incrementing it on every child
ARTICULATION(u, v)
Tmin(v) — min(Tmin(V% Tmin(u))
> Now inequality is non-strict, and root is not considered

if Tmin(u) > Tin(v) and p # —1 then
REPORTARTICULATION(V)
end if
else
Tin(v) <= min(Tin(v), Tmin(u))

end if
end for
if p=—1 and ch > 1 then REPORTARTICULATION(v) end if > A root is AP iff ch > 1

end procedure

