. ° .
e.c.0%0
~.o:o:ofo’
. [ ] [ ]

L] (]

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 5: Algorithms on Graphs 1
Lecture 4: Depth First Search with Timestamps

Maxim Buzdalov
Saint Petersburg 2016



 ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

2/9



ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tin, Tout < {OO}
A(v) ={u]| (v,u) € E}
t<0
procedure DFS(v)
t«t+1
Tin(v) <t
for u € A(v) do
if Tin(u) = oo then DFS(u) end if
end for
t—t+1
Tout(v) « t
end procedure

2/9



ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t<«0
procedure DFS(v)

t—t+1

Tin(v) <t

for u € A(v) do

if T;n(u) = oo then DFS(u) end if

end for

t—t+1

Tout(v) « t
end procedure

2/9



ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t<0
procedure DFS(v)
t+—t+1 > Incrementing time
Tin(v) <t

for u € A(v) do
if Tin(u) = oo then DFS(u) end if
end for
t—t+1
Tout(v) « t
end procedure

2/9



ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G =(V,E)

Tins Tout < {00} > Tin(v): the time of entering v
A(v) ={u|(v,u) € E} > Tout(v): the time of exiting v
t+0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering

for u € A(v) do
if Tin(u) = oo then DFS(u) end if
end for
t—t+1
Tout(v) « t
end procedure

2/9



332 ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G =(V,E)

Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t+0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering
for u € A(v) do
if T;n(u) = co then DFS(u) end if > Means “not previously entered”
end for
t—t+1
Tout(v) « t

end procedure

2/9



332 ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tin, Tout < {00} > Tin(v): the time of entering v
A(v) ={u]| (v,u) € E} > Tout(v): the time of exiting v
t+0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering
for u € A(v) do
if Tin(u) = oo then DFS(u) end if > Means “not previously entered”
end for
t+—t+1 > Incrementing time
Tout(v) « t

end procedure

2/9



* ITMO UNIVERSITY Depth First Search with Timestamps

Let’s modify DFS to track the time of entering and exiting a vertex

G=(V,E)
Tins Tout < {00} > Tin(v): the time of entering v
A(v)={u|(v,u) € E} > Tout(v): the time of exiting v
t<0
procedure DFS(v)
t—t+1 > Incrementing time
Tin(v) <t > Marking the time of entering
for u € A(v) do
if T;n(u) = co then DFS(u) end if > Means “not previously entered”
end for
t—t+1 > Incrementing time
Tout(v)  t > Marking the time of exiting

end procedure

2/9



ITMO UNIVERSITY Example run of the algorithm

3/9



ITMO UNIVERSITY Example run of the algorithm

3/9



ITMO UNIVERSITY Example run of the algorithm

3/9



ITMO UNIVERSITY Example run of the algorithm

3/9



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

Tin=24 E Tout =5



ITMO UNIVERSITY

Example run of the algorithm

Tin=24 E Tout =5

H Tout = 14



ITMO UNIVERSITY

Example run of the algorithm

Tin=24 E Tout =5

G Toth = 15

H Tout = 14



ITMO UNIVERSITY

Example run of the algorithm

Tin=24 E Tout =5

G Toth = 15

H Tout = 14



ITMO UNIVERSITY

Example run of the algorithm

Tgut =6 Tin =128 B Tout = 17

Tin=24 E Tout =5

G Toth = 15

H Tout = 14



ITMO UNIVERSITY

Example run of the algorithm

VA 7o = 18

Tgut =6 Tin =128 B Tout = 17

Tin=24 E Tout =5

G Toth = 15

H Tout = 14



ITMO UNIVERSITY Example run of the algorithm

» Important timestamp property:
A is ancestor of B <
T|n(A) < Tln(B) < Tout(B) < Tout(A)

VA 7o = 18

Tgut =6 Tin =128 B Tout = 17

Tin=24 E Tout =5



ITMO UNIVERSITY Example run of the algorithm

» Important timestamp property:
A is ancestor of B &
T|n(A) < Tln(B) < Tout(B) < Tout(A)
» This is a fast way to determine
whether a vertex is an ancestor of
another one

Toth =17

Tin=24 E Tout =5

7—out =15

Tout = 14



ITMO UNIVERSITY Example run of the algorithm

» Important timestamp property:
A is ancestor of B &
T|n(A) < Tln(B) < Tout(B) < Tout(A)
» This is a fast way to determine
whether a vertex is an ancestor of
another one

Toth =17

Tin =4 E Tout =5
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7—out =15
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