
How to Win Coding Competitions: Secrets of Champions

Week 2: Computational complexity. Linear data structures
Lecture 4: List

Pavel Krotkov
Saint Petersburg 2016



Operations on list

Let’s define operations we need for this data structure.

O(1) operations

I inserting an element to any place of data structure

I removing an element from any place of data structure

Accessing element by its index can be implemented in linear time.

2 / 9



Operations on list

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to any place of data structure

I removing an element from any place of data structure

Accessing element by its index can be implemented in linear time.

2 / 9



Operations on list

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to any place of data structure

I removing an element from any place of data structure

Accessing element by its index can be implemented in linear time.

2 / 9



Operations on list

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to any place of data structure

I removing an element from any place of data structure

Accessing element by its index can be implemented in linear time.

2 / 9



Operations on list

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to any place of data structure

I removing an element from any place of data structure

Accessing element by its index can be implemented in linear time.

2 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Main idea

Consider the following structure.

I all elements are stored separately

I link to the whole structure is link to the first element (or null if the structure is
empty)

I first element stores its value and link to the second element (or null if the
structure consists of one element)

I second element stores its value and link to the third element (or null if the
structure consists of two elements)

I etc.

head 3 6 2 null

3 / 9



Insertions

We can easily insert any element to any place in this structure.

I insertion takes only creating a new element and changing one link

head 3 6 2 null

8

Note

I we need to have a link to an element after which we want to insert a new one

4 / 9



Insertions

We can easily insert any element to any place in this structure.

I insertion takes only creating a new element and changing one link

head 3 6 2 null

8

Note

I we need to have a link to an element after which we want to insert a new one

4 / 9



Insertions

We can easily insert any element to any place in this structure.

I insertion takes only creating a new element and changing one link

head 3 6 2 null

8

Note

I we need to have a link to an element after which we want to insert a new one

4 / 9



Insertions

We can easily insert any element to any place in this structure.

I insertion takes only creating a new element and changing one link

head 3 6 2 null

8

Note

I we need to have a link to an element after which we want to insert a new one

4 / 9



Deletions

We also can delete any element from any place in this structure.

I deletion takes only changing one link

head 3 6 2 null

Note

I we need to have a link to an element previous to an element we want to delete

5 / 9



Deletions

We also can delete any element from any place in this structure.

I deletion takes only changing one link

head 3 6 2 null

Note

I we need to have a link to an element previous to an element we want to delete

5 / 9



Deletions

We also can delete any element from any place in this structure.

I deletion takes only changing one link

head 3 6 2 null

Note

I we need to have a link to an element previous to an element we want to delete

5 / 9



Deletions

We also can delete any element from any place in this structure.

I deletion takes only changing one link

head 3 6 2 null

Note

I we need to have a link to an element previous to an element we want to delete

5 / 9



Code examples

C++ code example
template <typename T>

struct list node {
list node *next;

T value;

};

Java code example
class ListNode <T> {
ListNode next;

T value;

}

6 / 9



Code examples

C++ code example
template <typename T>

struct list node {
list node *next;

T value;

};

Java code example
class ListNode <T> {
ListNode next;

T value;

}

6 / 9



Code examples

insert(p, new)

new.next← p.next

p.next← new

delete next(p)

p.next← p.next.next

7 / 9



Code examples

insert(p, new)

new.next← p.next

p.next← new

delete next(p)

p.next← p.next.next

7 / 9



Final thoughts

You should be very careful with potential null references while implementing this data
structure.

List can also be doubly linked.

I each node store links to next and previous nodes

8 / 9



Final thoughts

You should be very careful with potential null references while implementing this data
structure.

List can also be doubly linked.

I each node store links to next and previous nodes

8 / 9



Thank you
for your attention!

9 / 9


