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Insertion sort

Idea of the algorithm:

I A sequence of one element is sorted. Let’s grow it!
I Increase the sorted part, step by step, until everything is sorted

I Take the element adjacent to the sorted part
I Push it backwards, step by step, while it is greater than the predecessor

procedure InsertionSort(A, ≤)
for i from 1 to |A| by 1 do

k ← i
while (k > 1) and not (A[k − 1] ≤ A[k]) do

A[k − 1]⇔ A[k]
k ← k − 1

end while
end for

end procedure
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Insertion sort: Correctness

Theorem
After t ≥ 1 iterations of the insertion sort, the A[1 : t] part of the input is sorted.

Proof.
We use mathematical induction.

I Induction base. For t = 1, A[1 : 1] consists of one element, thus it is sorted.

I Induction step. Let x = A[t]. By induction assumption, A[1 : t − 1] is sorted.
Thus, there exists an index j ∈ [1; t] such that:

I for all i < j , A[i ] ≤ x
I for all i ≥ j , A[i ] > x

The relative order of the elements from A[1 : t − 1] is not changed while x is
propagated backwards. So when A[j ] becomes x , A[1 : t] becomes ordered.

Correctness of the insertion sort follows from this theorem with t = |A|.
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Insertion sort: Running time I

I Let N = |A|
I Running time of a t-th iteration: at most t − 1 comparisons and swaps

I At least one comparison for t > 1

I Upper bound on the total running time:

O
(∑N

i=1(t − 1)
)

= O
(
N(N−1)

2

)
= O(N2)

I Lower bound on the total running time: Ω
(∑N

i=2 1
)

= Ω(N)

I Both bounds are strict:
I Best case: A = [1, 2, . . . ,N − 1,N]
I Worst case: A = [N,N − 1, . . . , 2, 1]

I What about the average case?
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Insertion sort: Running time II

A more precise running time estimation. . .

Inversion: the number of situations when i < j and Ai > Aj

Observations:
I The number of swaps in the insertion sort is equal to the number of inversions

I Each swap decreases the number of inversions by one
I At the end, we have a sorted array, which has zero inversions

I The running time is proportional to the number of inversions
I . . . plus at most N − 1 comparisons which do not result in swaps

I The average running time of the insertion sort over all permutations is Θ(N2)
I Count the total number of inversions in all permutations

I Consider two arbitrary indices 1 ≤ i < j ≤ N
I Each permutation with Ai < Aj has = 1 corresponding one with Ai > Aj

I N!/2 permutations with inversion on i and j

I Average number of inversions per permutation: N!
2 ·

N(N−1)
2 · 1

N! = N(N−1)
4 = Θ(N2)
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Insertion sort: Running time II

A more precise running time estimation: Θ(N2) on average
Inversion: the number of situations when i < j and Ai > Aj

Observations:
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