Energy Within Environmental Constraints Conversion Sheet

	Heat of Combustion		Mass Density		Carbon Intensities		
	GJ/kg	GJ/m ³	kg/m³	kg/GJ	kg CO ₂ /kg	kg CO ₂ /m ³	kg CO ₂ /GJ
Coal	.027	X	X	37	2.2	x	90
Crude Oil	.046	39	850	22	3.3	2800	71
Diesel	.046	38	840	22	3.2	2600	69
Gasoline	.047	35	740	21	3.2	2400	68
Hydrogen	.14	.013	.09	7	0	0	0
Natural Gas	.052	.04	0.78	19	2.6	2	50

$$\frac{.0036\,GJ}{kWh} \ or \ \frac{278\,kWh}{GJ} \ or \ \frac{.28\,m^3}{Mcf} \ or \ \frac{.035\,Mcf}{m^3} \ \frac{42\,gallons}{barrel} \ or \ \frac{.024\,barrels}{gallon}$$

$$\frac{3412\,BTU}{kWh} \ or \ \frac{.000293\,kWh}{BTU} \ \frac{.0038\,m^3}{gallon} \ or \ \frac{264\,gallons}{m^3} \ \frac{2.78\,\$/GJ}{c/kWh} \ or \ \frac{.36\,c/kWh}{\$/GJ}$$

$$\frac{.1\,c/kWh}{\$/MWh} \ or \ \frac{10\,\$/MWh}{c/kWh}$$

Useful metric to imperial conversions: 1 mile = 1.61 km. 1 pound = 0.454 kg.

Heats of combustion are HHV's (<u>higher heating values</u>). All quantities are as measured at 1 atm and 25° C Mcf – thousand cubic feet

"Carbon intensity" is for combustion only (not lifecycle); adapted from from the EIA

Coal properties vary with rank; we use the average of bituminous and sub-bituminous which constitute 90+% of US production

Mass- and energy-density data adapted from Argonne Nat'l Labs' GREET Project

Numbers have few significant digits for convenience; not intended for extremely precise calculation

Please report errors using a [STAFF] thread in the course discussion board. Updated 08/06/2018