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Motivation



Motivation

Human dimension in

◮ engineering

◮ business

◮ marketing

◮ planning

◮ policy making



Motivation

Concept of demand
Willingness and ability to purchase a
commodity or service [Merriam-Webster]



Applications

Transportation

◮ Choice of destination

◮ Choice of transportation mode

◮ Choice of itinerary

◮ Choice of vehicle



Applications

Marketing

◮ Choice of packaging

◮ Choice of store

◮ Choice of product

◮ Choice of brand



Applications

Health

◮ Choice of treatment

◮ Choice of doctor

◮ Choice of training for doctors



Applications

Energy

◮ Choice of appliances

◮ Choice of energy savings measures

◮ Choice of heating equipment



Motivation

Need for

◮ behavioral theories

◮ quantitative methods

◮ operational mathematical models



In this course...

Focus

◮ Individual / disaggregate behavior (vs. aggregate behavior)

◮ Theory of behavior which is
◮ descriptive (how people behave) and not normative (how they should

behave)
◮ general: not too specific
◮ operational: can be used in practice for forecasting

◮ Type of behavior: choice



Importance

Daniel L. McFadden

◮ UC Berkeley 1963, MIT 1977, UC
Berkeley 1991

◮ Laureate of The Bank of Sweden Prize
in Economic Sciences in Memory of
Alfred Nobel 2000

◮ Owns a farm and vineyard in Napa
Valley

◮ “Farm work clears the mind, and the
vineyard is a great place to prove
theorems”
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Simple example: introduction



Simple example

Objectives
Introduce basic components of choice
modeling:

◮ definition of the problem

◮ data

◮ model specification

◮ parameter estimation

◮ model application

Application
Analysis of the market for electric cars



Choice problem

Choice
Consumer’s choice to

◮ own an electric car

◮ own a car with combustion engine

Research questions

◮ what is the current market
penetration of electric cars relative
to combustion engine cars?

◮ how will the penetration change in
the future?



Data

Population

◮ adults aged 20 and above

◮ in Switzerland

◮ owning a car

Sample

◮ 2500 individuals

◮ randomly selected



Questions

Is your car electric?

◮ Yes,

◮ No.

What is your age range?

◮ 20–39

◮ 40–64

◮ 65+



Data

Contingency table

Age
20–39 40–64 65+

Electric 65 55 5
Not electric 835 1045 495



Data

This slide is not shown. I will write by hand its content on

the previous slide.

Contingency table

Age
20–39 40–64 65+ Total

Electric 65 55 5 125
Not electric 835 1045 495 2375

900 1100 500 2500

Market penetration

◮ In the sample
125/2500 = 5%

◮ Currently in the
population: by
inference: 5%

◮ How do we predict?
We need a model.
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Definitions.

A mathematical model involves variables. There are two different types of
variables. The first is the dependent or endogenous variable. It is what we are
explaining. In the context of discrete choice, the dependent variable is the
choice. Actually, the term discrete choice emphasizes that the dependent
variable (that is, the choice) is discrete, and not continuous like in linear
regression.

The other type of variables are called independent, exogenous, or explana-
tory variables. A model typically involves several independent variables.
They can be either discrete or continuous.

The models developed in this course are probabilistic, in the sense that
they associate a probability with different values of the variables.

For example, consider a dependent variable i (the choice) and an inde-
pendent variable k. The probability that i is equal to ℓ and k is equal to j

is called the joint probability and denoted

Pr(i = ℓ, k = j). (1)

The probability for a single variable to be equal to a given value is called
the marginal probability. In the above example, the marginal probability for
the variable i is denoted Pr(i = ℓ) and is derived from the joint probabilities
by enumerating all the possibles values of the other variable(s):

Pr(i = ℓ) =
∑

j

Pr(i = ℓ, k = j). (2)

If the value of one of the variables is known, the probability associated
with the other variable is called the conditional probability. For instance, the

1



probability that i = ℓ, conditional to the fact that k = j is denoted

Pr(i = ℓ|k = j). (3)

The joint probability can be decomposed into the product of a conditional
probability and a marginal probability:

Pr(i = ℓ, k = j) = Pr(i = ℓ|k = j) Pr(k = j)
= Pr(k = j|i = ℓ) Pr(i = ℓ).

(4)

Using (4) into (2), we obtain the law of total probability :

Pr(i = ℓ) =
∑

j

Pr(i = ℓ|k = j) Pr(k = j). (5)

2
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Practice quiz

Consider the simple example about electric cars’ ownership discussed in
this section. The associated contingency table is the following:

Age
20–39 40–64 65+ Total

Electric 65 55 5 125
Not electric 835 1045 495 2375

900 1100 500 2500

Perform the following tasks:

1. calculate all possible joint probabilities,

2. calculate all possible marginal probabilities in two different ways:

(a) from the joint probabilities calculated in 1,

(b) directly from the contingency table,

3. calculate all possible conditional probabilities.

1
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Solution of the practice quiz

1. We denote by i the choice, which in this case refers to electric car or not,
and by k the age category. In order to calculate the joint probability
P (i = ℓ, k = j), we just need to divide the cell of the contingency
table corresponding to i = ℓ and k = j by the total size of the sample.
For instance, the joint probability of i = electric and k = 20–39 is
calculated as

P (i = electric, k = 20–39) =
65

2500
= 2.6%.

The remaining joint probabilities are calculated in an analogous way
and included in the following table:

Age
20–39 40–64 65+

Electric 2.6 % 2.2% 0.2%
Not electric 33.4% 41.8% 19.8%

2. The marginal probability for a single variable to be equal to a given
value can be derived in two different ways. For example, for i = electric,
it can be calculated

(a) by adding the joint probabilities of i = electric and all possible

1



age categories:

P (i = electric) =P (i = electric, k = 20–39)+

P (i = electric, k = 40–64)+

P (i = electric, k = 65+)

=
65

2500
+

55

2500
+

5

2500
=

125

2500
= 5%,

(b) directly from the contingency table by dividing the row total of
i = electric by the total size of the sample:

P (i = electric) =
125

2500
= 5%.

Analogously, P (i = not electric) = 2375

2500
= 95%. The marginal proba-

bilities associated with the different age categories are calculated in a
similar way:

• P (k = 20–39) = 36%,

• P (k = 40–64) = 44%,

• P (k = 65+) = 20%.

3. The probability that i = ℓ conditional to the fact that k = j can be
obtained from the corresponding joint probability and the marginal
probability of k = j:

P (i = ℓ|k = j) =
P (i = ℓ, k = j)

P (k = j)
.

For instance, if i = electric and k = 20− 39:

P (i = electric|k = 20–39) =
P (i = electric, k = 20–39)

P (k = 20–39)
=

65

2500

900

2500

=
65

900
= 7.2%.

The remaining conditional probabilities of the form P (i = ℓ|k = j) are
included in the following table:
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Age
20–39 40–64 65+

Electric 7.2 % 5.0% 1.0%
Not electric 92.8% 95.0% 99.0%

Analogously, the conditional probabilities of the form P (k = j|i = ℓ)
are computed as

P (k = j|i = ℓ) =
P (i = ℓ, k = j)

P (i = ℓ)
,

and included in the following table:

Choice
Electric Not electric

20–39 52.0 % 35.2%
40–64 44.0 % 44.0%
65+ 4.0 % 20.8%
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Simple example: developing a model



Model

Variables

◮ i : status of electric car ownership (yes or no)

◮ k : age category (20–39, 40–64 or 65+)



Model

Decomposition

P(i , k) = P(i |k)P(k) = P(k |i)P(i)

Interpretation

◮ P(i |k): age explains electric car ownership

◮ P(k |i): electric car ownership explains age



Model

Model

◮ identify stable causal relationships
between the variables

◮ stability over time necessary to forecast

◮ here: we select P(i |k) as an acceptable
behavioral model



Model

Specification

P(i = yes | k = 20–39) = π1,

P(i = yes | k = 40–64) = π2,

P(i = yes | k = 65+) = π3.

Parameters

◮ π1, π2, π3

◮ unknown

◮ must be estimated from data



Model estimation

πj = P(i = yes | k = j)



Model estimation

Slide not shown. Write by hand on the previous slide

πj = P(i = 1|k = j) ≈ π̂j = P̂(i = 1|k = j) =
P̂(i = 1, k = j)

P̂(k = j)

Exercise
Calculate the estimates of the parameters π1, π2 and π3 from the contingency
table using the above formula.
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Practice quiz

Consider the simple example about electric cars’ ownership discussed in
this section. The associated contingency table is the following:

Age
20–39 40–64 65+ Total

Electric 65 55 5 125
Not electric 835 1045 495 2375

900 1100 500 2500

The model that is considered acceptable from a behavioral point of view
involves two variables:

• i, defined as the status of electric car ownership (yes or no), and,

• k, defined as the age category (20–39, 40–64, 65+).

The model is defined as

P (i = yes|k = 20–39) = π1,

P (i = yes|k = 40–64) = π2,

P (i = yes|k = 65+) = π3.

1. What is the dependent variable?

2. What is the independent variable?

3. Calculate the estimates of the parameters π1, π2 and π3 using the con-
tingency table.

1
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Solution of the practice quiz

1. The behavioral model is P (i|k), where i is defined as the status of
electric car ownership (yes or no) and k as the age category (20–39,
40–64, 65+). The status of electric car ownership i is the dependent,
or endogenous, variable.

2. The age, k, is the independent, exogenous, or explanatory variable.

3. The parameters specifying the model are the following:

P (i = yes|k = 20–39) = π1,

P (i = yes|k = 40–64) = π2,

P (i = yes|k = 65+) = π3.

Since we do not have access to the full population, we infer the value of
the parameters from the sample as follows (the required probabilities
are calculated in the previous practice quiz):

π1 ≈ π̂1 = P̂ (i = yes|k = 20–39) =
P̂ (i = yes, k = 20–39)

P̂ (k = 20–39)
=

65

900
= 0.0722,

π2 ≈ π̂2 = P̂ (i = yes|k = 40–64) =
P̂ (i = yes, k = 40–64)

P̂ (k = 40–64)
=

55

1100
= 0.0500,

π3 ≈ π̂3 = P̂ (i = yes|k = 65+) =
P̂ (i = yes, k = 65+)

P̂ (k = 65+)
=

5

500
= 0.0100.
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Simple example: quality of the estimates



Parameters estimates

π̂1 = 65/900 = 0.0722,
π̂2 = 55/1100 = 0.0500,
π̂3 = 5/500 = 0.0100.



Informal checks

◮ Do these estimates make sense?

◮ Do they match our a priori expectations?

◮ Here: as age increases, the market share of electric cars decreases.



Quality of the estimates

◮ How is π̂j different from πj?

◮ We have no access to πj

◮ For each sample, we would obtain a different value of π̂j

◮ π̂j is distributed.



Distribution of π̂2

0.03 0.035 0.04 0.045 0.05 0.055 0.06

π̂2 = 0.05

π2 = 0.048

f N
(π̂

2
)

π̂2

N = 2500



Distribution of π̂2

◮ Smaller samples are associated with wider spread

◮ The larger the sample, the better the estimate

◮ In practice, impossible to repeat the sampling multiple times

◮ Distributions derived from theoretical results or simulation



Distribution of π̂2

0.03 0.035 0.04 0.045 0.05 0.055 0.06

π2 = 0.048

f N
(π̂

2
)

π̂2

N = 2500
N = 1000



Statistical properties

◮ Bernoulli (0/1) random variables

◮ Variance: σ2

j = πj(1− πj)

◮ Sample average: unbiased estimator

◮ Standard error of the estimator:
√

σ2/N

◮ Estimated standard error:

ŝ
πj
=

√
π̂j(1− π̂j)/Nj
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Practice quiz

Consider the simple example about electric cars’ ownership discussed in
this section. The associated contingency table is the following:

Age
20–39 40–64 65+ Total

Electric 65 55 5 125
Not electric 835 1045 495 2375

900 1100 500 2500

Estimate the standard errors of the estimates π̂1 = 0.0722, π̂2 = 0.0500
and π̂3 = 0.0100 calculated in the previous practice quiz.

1
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Solution of the practice quiz

The standard errors of the estimates π̂
j
are calculated as follows:

ŝ
πj

=
√
π̂
j
(1− π̂

j
)/N

j
,

where N
j
is the number of observations used for the estimation. In this case,

N
j
is the number of individuals in age category j:

ŝ
π1

=
√
π̂1(1− π̂1)/N1 =

√
0.0722(1− 0.0722)/900 = 0.0086,

ŝ
π2

=
√
π̂2(1− π̂2)/N2 =

√
0.0500(1− 0.0500)/1100 = 0.0066,

ŝ
π3

=
√
π̂3(1− π̂3)/N3 =

√
0.0100(1− 0.0100)/500 = 0.0044.

1
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Maximum likelihood estimation

Likelihood
Probability that the model correctly predicts all the observations

Likelihood function

L∗ =
N∏

n=1

P(in|kn)

For our example

L∗ = (π1)
65(1− π1)

835(π2)
55(1− π2)

1045(π3)
5(1− π3)

495



Maximum likelihood estimation

Estimates

◮ Values of the parameters that maximize L∗.

◮ In practice, the logarithm is maximized

L = lnL∗ =
N∑

n=1

lnP(in|kn).

As 0 ≤ L∗ ≤ 1, we have L ≤ 0.

Properties

◮ Consistency

◮ Asymptotic efficiency



Maximum likelihood

−500

−400

−300

−200

−100

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

π̂1 = 0.072
π̂2 = 0.050

π̂3 = 0.010

••

•
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Parameter value

L
π1

= 65 log(x) + 835 log(1− x)
L

π2
= 55 log(x) + 1045 log(1− x)

L
π3

= 5 log(x) + 495 log(1− x)
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Hypothesis testing.

The main hypothesis that motivates the model that we are developing in
this simple example is that the age is explaining the ownership of an electric
car. We need to test this hypothesis against the data.

Assume that our hypothesis is wrong, that age does not explain the own-
ership of electric car. The terminology of hypothesis testing refers to this
as the null hypothesis, denoted by H0. In that case, the true value of the
parameters of our model must be equal:

π1 = π2 = π3. (1)

Indeed, the proportion of people in the population who own an electric car
must be the same for each age category. Now, for a specific sample, there
is no guarantee for these values to be equal. Indeed, we may have selected
electric car owners among young people, just by chance. This is the key
question that we are analyzing here: is the fact that the estimated values of
the parameters are different due to a structural reason (electric car ownership
indeed varies with age in the population) or purely due to random variations
in the sampling procedure?

The null hypothesis is a restricted version of our model of interest, where
the restriction is given by (1). Remember that we have used the maximum
likelihood procedure to obtain the estimates of the parameters. We have
solved the problem:

max
π1,π2,π3

L = 65 log(π1) + 835 log(1− π1)
+ 55 log(π2) + 1045 log(1− π2)
+ 5 log(π3) + 495 log(1− π3).

(2)

1



In this context, here is a fairly simple test that we can apply to test our
null hypothesis. We estimate two different models: a restricted model and an
unrestricted model. Conceptually, if imposing the restriction does not lead
to a large loss of fit (as measured by a decrease in log likelihood), then we
do not reject the null hypothesis.

The unrestricted model is obtained by solving (2), where we found π̂1 =
0.0722, π̂2 = 0.0500, and π̂3 = 0.0100 and the log likelihood for this model
is −479.782, as you can verify by substituting the estimated values of the
parameters into equation (2). Now we need to estimate the restricted model.

The restricted model has only a single parameter π. The likelihood of the
restricted model is

L∗ = (π)125(1− π)2375, (3)

and the log likelihood is

L = 125 log(π) + 2375 log(1− π). (4)

The maximum of this function is attained at π̂ = 0.050. Note that it
is the same value as the market share of the electric car. (Can you ex-
plain why?) We obtain the maximum value of the restricted log likelihood
function by plugging this estimate back into the log likelihood function:
L = 125 log(0.050) + 2375 log(1 − 0.050) = −496.288. So, clearly there has
been a loss of fit from LU = −479.782 (the log likelihood of the unrestricted
model) to LR = −496.288 (the log likelihood of the restricted model). The
loss of fit is expected as we restrict parameters, but the question is whether
this loss is statistically significant. For this we need a test statistic.

It can be shown (See Theil, 1971, p. 396 for a derivation) that, under the
null hypothesis, the test statistic

− 2(LR − LU) (5)

is asymptotically distributed as χ2 with degrees of freedom equal to the
number of restrictions (in our case, 2). If this statistic is “large” in the
statistical sense, we reject the null hypothesis that the restrictions are true.
In our case, the value of the statistic is −2(−496.288.0+ 479.782.0) = 33.01.
We need to use the χ2 distribution to determine whether this is large enough
to reject the null hypothesis. Using a level of significance of 1% (that is, the
probability of rejecting the null hypothesis when it is true), the critical value
of the χ2 distribution with 2 degrees of freedom is 9.210 (see Table 1). As our
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test statistic is well above this critical value, we reject the null hypothesis with
at least 99% confidence and conclude that age does influence the ownership
of electric cars.

K 90% 95% 99% K 90% 95% 99%
1 2.706 3.841 6.635 21 29.615 32.671 38.932
2 4.605 5.991 9.210 22 30.813 33.924 40.289
3 6.251 7.815 11.345 23 32.007 35.172 41.638
4 7.779 9.488 13.277 24 33.196 36.415 42.980
5 9.236 11.070 15.086 25 34.382 37.652 44.314
6 10.645 12.592 16.812 26 35.563 38.885 45.642
7 12.017 14.067 18.475 27 36.741 40.113 46.963
8 13.362 15.507 20.090 28 37.916 41.337 48.278
9 14.684 16.919 21.666 29 39.087 42.557 49.588
10 15.987 18.307 23.209 30 40.256 43.773 50.892
11 17.275 19.675 24.725 31 41.422 44.985 52.191
12 18.549 21.026 26.217 32 42.585 46.194 53.486
13 19.812 22.362 27.688 33 43.745 47.400 54.776
14 21.064 23.685 29.141 34 44.903 48.602 56.061
15 22.307 24.996 30.578 35 46.059 49.802 57.342
16 23.542 26.296 32.000 36 47.212 50.998 58.619
17 24.769 27.587 33.409 37 48.363 52.192 59.893
18 25.989 28.869 34.805 38 49.513 53.384 61.162
19 27.204 30.144 36.191 39 50.660 54.572 62.428
20 28.412 31.410 37.566 40 51.805 55.758 63.691

Table 1: 90%, 95% and 99% of the χ2 distribution with K degrees of freedom

References

Theil, H. (1971). Principles of econometrics, John Wiley and Sons.
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Simple example: forecasting



Present situation

Age group 20–39 40–64 65+
Current share 36 % 44% 20%

Market penetration 7.2% 5% 1%

Total market penetration = 36% 7.2% + 44% 5% + 20% 1% = 5%



Future scenario

Age structure will change in the future

Age group 20–39 40–64 65+
Current share 36 % 44% 20%
Future share 25 % 50% 25%

Market penetration 7.2% 5% 1%

Future total market penetration = 25% 7.2% + 50% 5% + 25% 1% = 4.55%



Forecasting

◮ Causal relationship does not vary over time.

◮ Characterized by the model specification, including the values of its
parameters.

◮ Values of the explanatory variables evolve over time.
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Using a simple example, we went through all the stages of modeling:

• definition of the problem,

• data collection,

• model specification,

• model estimation,

• hypothesis testing,

• model application.

The rest of the course elaborates on these concepts in the general case.
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Ingredients of choice theory



Choice theory

Theory of behavior that is

◮ descriptive: how people behave and not how they should

◮ abstract: not too specific

◮ operational: can be used in practice for forecasting



Building the theory

Define

1. who (or what) is the decision maker,

2. what are the characteristics of the decision maker,

3. what are the alternatives available for the choice,

4. what are the attributes of the alternatives, and

5. what is the decision rule that the decision maker uses to make a choice.



Decision maker

Individual

◮ a person

◮ a group of persons (internal interactions are ignored)
◮ household, family
◮ firm
◮ government agency

◮ notation: n



Characteristics of the decision maker

Disaggregate models
Individuals

◮ face different choice situations

◮ have different tastes

Characteristics

◮ income

◮ sex

◮ age

◮ level of education

◮ household/firm size

◮ etc.



Alternatives: continuous choice set

Commodity bundle

◮ q1: quantity of milk

◮ q2: quantity of
bread

◮ q3: quantity of
butter

◮ Unit price: pi
◮ Budget: I

q1

q2

q3

p1q1 + p2q2 + p3q3 = I



Alternatives: discrete choice set

List of alternatives

◮ Brand A

◮ Brand B

◮ Brand C

A

B

C

•

•

•



Alternatives: discrete choice set

Choice set

◮ Non empty finite and countable set of alternatives

◮ Universal: C

◮ Individual specific: Cn ⊆ C

◮ Availability, awareness

Example
Choice of a transportation mode

◮ C ={car, bus, metro, walking }

◮ If decision maker n has no driver license, and the trip is 12km long

Cn = {bus,metro}



Alternative attributes

Characterize each alternative i

for each individual n

◮ price

◮ travel time

◮ frequency

◮ comfort

◮ color

◮ size

◮ etc.

Nature of the variables

◮ Discrete and continuous

◮ Generic and specific



Decision rule

Homo economicus
Rational and narrowly self-interested economic actor who is optimizing her
outcome

Preferences

◮ i ≻ j : i is preferred to j ,

◮ i ∼ j : indifference between i and j ,

◮ i % j : i is at least as preferred as j .



Decision rule

Rationality

◮ Completeness: for all alternatives i and j ,

i ≻ j or i ≺ j or i ∼ j .

◮ Transitivity: for all bundles i , j and k ,

if i % j and j % k then i % k .

◮ “Continuity”: if i is preferred to j and k is arbitrarily “close” to i , then k is
preferred to j .



Utility

Un : Cn −→ R : i  Un(i)

Consistent with the preferences

Un(i) ≥ Un(j) ⇐⇒ i % j .

◮ Unique up to an order-preserving transformation.

◮ Captures the attractiveness of an alternative.

◮ Measure that the decision maker wants to optimize.



Behavioral assumptions

◮ the preference structure of the decision maker is fully characterized by a
utility associated with each alternative

◮ the decision maker is a perfect optimizer

◮ the alternative with the highest utility is chosen



Theoretical foundations – 2.2 Microeconomic

consumer theory

Michel Bierlaire

Preferences and utility.

This document is a short extract from Bierlaire and Lurkin (2017).

Disaggregate demand models are rooted in microeconomics, the branch of
economics that focuses on the decision-making behavior of economic actors.
We refer to these actors as individuals, although they can also be households
or firms, for instance.

Consider a set X of goods, bundles, or actions. The objective is to de-
termine what element(s) of X will be chosen/purchased by a given individ-
ual. The preferences of the individual are assumed to be characterized by a
preference-indifference operator �.

Consider two goods a and b. Then a � b means that the individual either
prefers a to b, or is indifferent between a and b. Other operators can be
derived from the preference-indifference operator:

• a ∼ b is defined as (a � b and b � a) and means that the individual is
indifferent between a and b,

• a ≺ b is defined as (not a � b) and means that the individual strictly
prefers b to a.

Operators � and ≻ can be defined similarly.
A fundamental assumption is that each individual is rational. Formally,

it means that her preferences must satisfy completeness and transitivity over
the set X. Completeness means that, for each a, b ∈ X, it is possible to
decide if a � b is true or false. Transitivity means that, for any a, b, c ∈ X,
if a � b and b � c, then a � c.

1



It is possible to represent the preference structure of individuals using a
utility function (see Debreu, 1954). Let u : X → R be a function mapping
the set of goods to the real numbers. We say that u represents � on X if

a � b ⇐⇒ u(a) ≥ u(b).

The transitivity and completeness of the preferences guarantee the existence
of a utility function. It can also be shown that it is unique, up to order
preserving transformations1. Appropriate assumptions can also be made on
the preference structure in order to obtain desirable properties of the utility
function, such as continuity or differentiability. We refer the reader to text-
books in microeconomics such as Nicholson and Snyder (2007), Pindyck and
Rubinfeld (2008), or Varian and Repcheck (2010) for more details.
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The case of continuous goods



Continuous choice set

◮ Consumption bundle

Q =




q1
...
qJ



 p =




p1
...
pJ





◮ Budget constraint

p
T
Q =

J∑

ℓ=1

p
ℓ
q
ℓ
≤ I .

◮ No attributes, just quantities and prices



Choice

Solution of an optimization problem

max
Q

Ũ(Q)

subject to
p
T
Q ≤ I , Q ≥ 0.

Demand function

◮ Solution of the optimization problem

◮ Quantity as a function of prices and budget

Q
∗ = demand(I , p)



Example: Cobb-Douglas

Ũ(Q) = θ0

J∏

ℓ=1

q
θℓ

ℓ



Example: Cobb-Douglas
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Theoretical foundations – 2.2 Microeconomic

consumer theory

Michel Bierlaire

Practice quiz

Derive the demand function for the Cobb-Douglas utility function with
two commodities:

Ũ(q1, q2; θ) = θ0q
θ1

1
qθ2
2
, (1)

where θ = (θ0, θ1, θ2)
T is a column vector containing three positive parame-

ters representing the tastes of the consumer.

1



Theoretical foundations – 2.2 Microeconomic

consumer theory

Michel Bierlaire

Solution of the practice quiz

In this exercise, we address the following question: given all the possible
values of q1 and q2, which specific quantity of q1 and quantity of q2 does the
consumer choose? The behavioral assumption is that the consumer wants to
maximize her utility. What stops her from consuming an infinite number of
goods? These goods have prices and the consumer has a limited budget (I)
to spend on the goods.

Consumer behavior can be expressed as an optimization problem where
the consumer selects the quantities q1 and q2 that maximize her utility Ũ

and are compatible with her available budget I:

max
q1,q2

Ũ = θ0q
θ1

1
qθ2
2

(1)

subject to
p1q1 + p2q2 = I. (2)

The optimal solution of this optimization problem verifies the necessary
optimality conditions, based on the Lagrangian function:

L(q1, q2, λ; θ) = θ0q
θ1

1
qθ2
2
− λ(p1q1 + p2q2 − I), (3)

where λ is the Lagrange multiplier.
The Lagrangian somehow turns a constrained optimization problem (1)–

(2) into an unconstrained optimization problem where the objective function
is (3). In this way, the necessary optimality conditions for unconstrained op-
timization apply: the first derivatives are equal to zero. Here, the Lagrangian

1



has three unknowns: q1, q2 and the Lagrange multiplier λ. Therefore,

∂L/∂q1 = θ0θ1q
θ1−1

1
qθ2
2
− λp1 = 0, (4)

∂L/∂q2 = θ0θ2q
θ1

1
qθ2−1

2
− λp2 = 0, (5)

∂L/∂λ = p1q1 + p2q2 − I = 0. (6)

Multiplying (4) by q1 and (5) by q2, we have

θ0θ1q
θ1

1
qθ2
2
− λp1q1 = 0, (7)

θ0θ2q
θ1

1
qθ2
2
− λp2q2 = 0. (8)

Adding the two and using (6) we obtain

λI = θ0q
θ1

1
qθ2
2
(θ1 + θ2) (9)

or, equivalently,

θ0q
θ1

1
qθ2
2

=
λI

(θ1 + θ2)
. (10)

Using (10) in (7), we obtain

λp1q1

θ1
=

λI

(θ1 + θ2)
. (11)

Solving (11) for q1, we obtain

q∗
1
=

θ1

(θ1 + θ2)

I

p1
. (12)

Similarly, we obtain

q∗
2
=

θ2

(θ1 + θ2)

I

p2
. (13)

Note that the constraints q1, q2 ≥ 0 should also have been included in
the optimization problem (1)–(2). As the parameters θ are positive, if the
budget is non zero, the optimal quantities are positive, and these constraints
are not active at the solution. Therefore, it was appropriate to ignore them.

The Cobb-Douglas function has the property that the demand for a good
is only dependent on its own price and independent of the price of any other

2



good, which is a fairly restrictive assumption. The equations can also be
solved for the third unknown, the Lagrange multiplier λ:

λ = θ0(θ1 + θ2)

(
θ1

θ1 + θ2

)
θ1
(

θ2

θ1 + θ2

)
θ2 I(θ1+θ2−1)

pθ1
1
pθ2
2

(14)

The parameter λ is not just a nuisance parameter but has a useful inter-
pretation. Its value is the marginal utility of income, that is the increase in
utility that results if income is increased by one unit. Equivalently, λ is equal
to the marginal utility of good ℓ (∂Ũ/∂q

ℓ
) divided by the marginal cost of

good ℓ (equal to p
ℓ
in this example) for all goods, or

λ =
∂Ũ/∂q

ℓ

p
ℓ

for all goods ℓ. (15)

The above equation is directly derived from (4) and (7), that can be written
as

∂L/∂q
ℓ
= ∂Ũ/∂q

ℓ
− λp

ℓ
= 0. (16)

Equation (15) is often described as an optimality condition. Concep-
tually, at optimal consumption each good should yield the same marginal
utility per monetary unit spent. At optimality, if given one extra unit of
income to spend, the consumer is indifferent as to which good to purchase
more. If the consumer is not indifferent, then she was not at optimality and
should adjust her consumption bundle towards the preferred good. The op-
timality conditions can also be rearranged to state that the marginal rate of
substitution of good i for good j is equal to the ratio of the marginal costs
of good i relative to good j. For the two commodity case and linear budget
constraint, this optimality condition is obtained by calculating the ratio of
(15) for ℓ = 1 and ℓ = 2 as

∂Ũ/∂q1

∂Ũ/∂q2
=

p1

p2
. (17)
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Microeconomic theory of discrete goods

The consumer

◮ selects the quantities of continuous goods: Q = (q1, . . . , qL)

◮ chooses an alternative in a discrete choice set i = 1, . . . , j , . . . , J

◮ discrete decision vector: (y1, . . . , yJ), yj ∈ {0, 1},
∑

j
yj = 1.

Note

◮ In theory, one alternative of the discrete choice combines all possible choices
made by an individual.

◮ In practice, the choice set will be restricted for tractability



Example

Choices

◮ House location: discrete choice

◮ Car type: discrete choice

◮ Number of kilometers driven per year:
continuous choice

Discrete choice set
Each combination of a house location and a
car is an alternative



Utility maximization

Utility

Ũ(Q, y , z̃Ty)

◮ Q: quantities of the continuous good

◮ y : discrete choice

◮ z̃
T = (z̃1, . . . , z̃i , . . . , z̃J) ∈ R

K×J : K attributes of the J alternatives

◮ z̃
T
y ∈ R

K : attributes of the chosen alternative

◮ θ: vector of parameters



Optimization problem

max
Q,y

Ũ(Q, y , z̃Ty)

subject to
p
T
Q + c

T
y ≤ I∑

j
yj = 1

yj ∈ {0, 1}, ∀j .

where c
T = (c1, . . . , ci , . . . , cJ) is the cost of each alternative

Solving the problem

◮ Mixed integer optimization problem

◮ No optimality condition

◮ Impossible to derive demand functions directly



Solving the problem

Step 1: condition on the choice of the discrete good

◮ Fix the discrete good, that is select a feasible y .

◮ The problem becomes a continuous problem in Q.

◮ Conditional demand functions can be derived:

q
ℓ|y = demand(I − c

T
y , p, z̃Ty),

or, equivalently, for each alternative i ,

q
ℓ|i = demand(I − ci , p, z̃i).

◮ I − ci is the income left for the continuous goods, if alternative i is chosen.

◮ If I − ci < 0, alternative i is declared unavailable and removed from the
choice set.



Solving the problem

Conditional demand functions

demand(I − ci , p, z̃i), i = 1, . . . , J

Conditional indirect utility functions
Substitute the demand functions into the utility:

Ui = Ũ(demand(I − ci , p, z̃i), z̃i) = U(I − ci , p, z̃i), i = 1, . . . , J



Solving the problem

Step 2: Choice of the discrete good

max
y

U(I − c
T
y , p, z̃Ty) s.t.

J∑

i=1

yi = 1.

◮ Enumerate all alternatives.

◮ Compute the conditional indirect utility function Ui .

◮ Select the alternative with the highest Ui .

◮ Note: no income constraint anymore.



Model for individual n

max
y

U(In − c
T

n
y , pn, z̃

T

n
y)

Simplifications

◮ Sn: set of characteristics of n, including income In.

◮ Prices of the continuous goods (pn) are neglected.

◮ cin is considered as another attribute and merged into z̃n

zn = {z̃n, cn}.

max
i

Uin = U(zin, Sn)



Theoretical foundations – 2.3 Example

Michel Bierlaire

Transportation mode choice example.

We illustrate the concept of utility using a simple example of a transporta-
tion mode choice, where two alternatives are considered for a commuter trip:
car and bus. Each alternative is characterized by two attributes: the travel
time and the travel cost, as reported in Table 1

Attributes
Alternatives Travel time (t) Travel cost (c)

Car (i) ti ci
Bus (j) tj cj

Table 1: Attributes of the alternatives

We denote by yi and yj the binary variables associated with each alter-
native:

yi =

{
1 if car is chosen,
0 otherwise;

and yj = 1 − yi, in order to verify the constraint imposing that exactly one
alternative is chosen. In terms of the decision problem that the individual is
solving, the decision variables and the feasible set are illustrated in Figure 1.

The utility functions associated with each alternative can be written as

Ui = −βtti − βcci,

Uj = −βttj − βccj,

where βt > 0 and βc > 0 are parameters.
Note that this specification involves some behavioral assumptions:

1



•

yi(1, 0)
•

yj

(0, 1)

Figure 1: Decision variables and feasible set

• The sign restrictions on the unknown parameters βt and βc impose that
the value of the utility decreases when one of the variables increases. It
is consistent with the behavioral assumption that commuters want to
arrive as fast as possible to their destination, at the lowest cost possible.

• The same coefficients are used for both alternatives. This implies that
a modification of the travel time has the same impact on the utility
of car and on the utility of bus. The same applies for travel cost.
This assumption is debatable. It can be argued that an additional
minute spent in the bus, with the possibility to sleep, listen to music,
or read, may not be perceived the same way as spending one more
minute driving the car.

As a representation of the individual’s preferences, the utility is defined
up to order preserving transformations. For instance, we can divide each
utility by a strictly positive number, without modifying their ranking.

U ′

i = −(βt/βc)ti − ci = −βti − ci
U ′

j = −(βt/βc)tj − cj = −βtj − cj

where β = βt/βc > 0 is a parameter. Note that this parameter is converting
travel time units into travel cost units, so that they can be combined together
in the same utility function.

The behavioral assumption is that alternative i is chosen if Ui ≥ Uj or,

2



equivalently, if U ′

i ≥ U ′

j. If we ignore ties, we obtain

−βti − ci < −βtj − cj,

or, equivalently,
−β(ti − tj) < ci − cj.

Two cases are trivial:

• If cj > ci and tj > ti, the car alternative is both cheaper and faster
than the bus alternative. Therefore, Ui > Uj for any β > 0, and the
car is chosen. The car alternative is called a dominating alternative.

• Symmetrically, if ci > cj and ti > tj, the car alternative is both more
expensive and slower than the bus alternative. Therefore, Ui < Uj

for any β > 0, and the bus is chosen. The car alternative is called a
dominated alternative.

But what happens when one alternative is cheaper and slower than the other
one? In that case, the parameter β captures the trade-off of the decision-
maker between the two variables. For instance, assume that the car is cheaper
and slower than the bus, that is cj > ci and ti > tj. Alternative j is chosen
if

−β(ti − tj) < ci − cj,

or, as ti > tj,

β >
cj − ci

ti − tj
.

The behavioral question is: Is the traveler willing to pay the extra cost cj−ci
to save the extra time ti − tj? The parameter β is capturing this behavioral
trade-off. It is called the value of time, or the willingness to pay to save travel
time, and will be discussed in more details later in the course.

This simple example is illustrated in Figure 2. The x-axis corresponds to
the difference of travel time ti − tj. Therefore, negative values correspond to
alternative i being faster, and positive values to alternative j being faster.
Similarly, the y-axis corresponds to the difference of travel cost ci − cj. Neg-
ative values correspond to alternative i being cheaper, and positive values to
alternative j being cheaper.

The north-east quadrant corresponds to situations where alternative j is
dominant. Indeed, it is both faster and cheaper. Symmetrically, the south-
west quadrant corresponds to situations where alternative i is dominant.
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The two other quadrants correspond to situations where there is a trade-
off between travel time and travel cost. For a given value of the parameter
β, we draw the indifference line, corresponding to situations where the two
utilities are equal, that is

ci + βti = cj + βtj,

or, equivalently,
ci − cj = −β(ti − tj).

As β > 0, the slope of this line is negative.
In order to determine the value of β, we collect choice data. We observe

a sample of individuals during their commuting trip, and, for each of them,
collect:

• the travel time by car ti,

• the travel time by bus tj,

• the travel cost by car ci,

• the travel cost by bus cj,

• the alternative actually chosen (i or j).

The data is represented in Figure 3, using the following convention:

• each dot corresponds to an individual,

• the x coordinate of the dot corresponds to the associated value of ti−tj,

• the y coordinate of the dot corresponds to the associated value of ci−cj,

• the shape of the dot reveals the choice made by the individual.

Therefore, the objective is to find a value of β, that is, to find a slope
of the indifference line, such that all dots corresponding to alternative i lie
on one side of the line, and all dots corresponding to alternative j lie on
the other side. It is clear that the choice of β in Figure 3 does not achieve
that. Moreover, it is relatively easy to figure out that it is impossible to find
such a slope. There is at least one dot corresponding to alternative i that
is surrounded by dots corresponding to alternative j, and that cannot be
separated from them using any line.
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c
i + βt

i =
c
j + βt

j

ti − tj

ci − cj

Alt. i is dominant

Alt. j is dominant

Alt. j is preferred

Alt. i is preferred

β

1

Figure 2: Simple example: two transportation modes
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This inconsistency between the behavioral model and the behavioral ob-
servations illustrates the limitations of the utility theory, when confronted
to data, and motivates to consider the utility as a random variable. The
random utility theory is discussed next.
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c
i + βt

i =
c
j + βt

j

ti − tj

ci − cj

Alt. i is dominant

Alt. j is dominant

Alt. j is preferred

Alt. i is preferred

β

1

Alt. i is chosen Alt. j is chosen

Figure 3: Simple example: two transportation modes with observed choices
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Practice quiz.

In order to illustrate the concept of utility, we have introduced a simple
example of a transportation mode choice, where two alternatives are consid-
ered for a commuter trip: car (alternative i) and bus (alternative j). The
utility functions associated with each alternative are written as

Ui = −βtti − βcci, (1)

Uj = −βttj − βccj, (2)

where ti and tj are the travel times of each alternative, ci and cj are the
travel costs, and βt > 0 and βc > 0 are parameters.

The same coefficients (βt and βc) are used for both alternatives. This
implies that a modification of the travel time has the same impact on the
utility of car and on the utility of bus. The same applies for travel cost. This
assumption is debatable. It can be argued that an additional minute spent
in the bus, with the possibility to sleep, listen to music, or read, may not be
perceived the same way as spending one more minute driving the car. How
would you specify a model where the impact of an additional minute in travel
time would be different for the two alternatives?
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Solution of the practice quiz.

If we want to capture the idea that an additional minute spent in the bus
may not be perceived the same way as spending one more minute driving
the car, then the utility functions associated with each alternative have to
be written as

Ui = −βtiti − βcci, (1)

Uj = −βtjtj − βccj, (2)

where βti > 0, βtj > 0, and βc > 0 are parameters.

1



Theoretical foundations – 2.4 Random utility

theory

Michel Bierlaire

Probabilistic choice.

Up to now, the theoretical developments have assumed that individuals
behave deterministically. Decision-makers are assumed to be all knowing
with perfect discriminatory power, able to process information, choose the
best choice, and repeat this identical choice under identical circumstances.
This is implied by the assumed properties of the preferences, such as com-
pleteness, transitivity, and continuity. However, the simple example pre-
sented before illustrates that such assumptions may not be fully consistent
with real behavior. Actually, there are copious examples both in labora-
tory experiments and in the field in which it appears that decision-makers
do not behave as such. As Tversky (1969) points out, “when faced with
repeated choices between x and y, people often choose x in some instances
and y in others.” Inspired by the need to explain experimental observa-
tions of inconsistent preferences, probabilistic choice theory was developed.
In probabilistic choice theory, rather than assuming there is a deterministic
process that can be used to establish the choice outcome, it is recognized
that the best that can be done is to determine the probability of different
choice outcomes given a particular choice situation and decision-maker.

There are several ways of modeling probabilistic choice. In this course,
we assume that the source of the stochasticity is due to errors made by
the analyst in developing the model. Here the assumption is that while
humans are deterministic and rational utility maximizers, analysts are unable
to understand and model fully all of the relevant factors that affect human
behavior. The individual is assumed to be all knowing and rational and
select the alternative with the highest utility. However, the utilities are not
known to the analyst with certainty and are therefore treated by the analyst

1



as random variables. This is called the random utility approach. The value of
the random utility approach is that it provides a link with behavioral theory
from microeconomics and therefore a link to the concepts and methods that
are useful for both developing model specifications and using the models for
analysis.

Formally, the utility that individual n associates with alternative i is a
random variable denoted Uin. The fact that alternative i is chosen is again
associated with the fact that Uin is the largest utility. The model is now
expressed in a probabilistic way, as follows:

P (i|Cn) = Pr(Uin ≥ Ujn, ∀j ∈ Cn). (1)

The most common representation for Uin is inspired from linear regression.
The utility is separated into two additive parts:

Uin = Vin + εin, (2)

where Vin is called the deterministic or systematic part of the utility, and
εin is the error term. Typically, Vin involves the explanatory variables, while
distributional assumptions are made on the joint distribution of the random
vector of error terms εn = (ε1n, . . . , εJnn)

In the rest of the course, we are intuitively deriving concrete models,
based on simple assumptions, that are relaxed later on. In the next unit, we
provide a general derivation of the model. As it is quite technical, it may be
skipped without loss of continuity.

References
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76(1): 31–48.
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Theoretical foundations – 2.4 Random utility

theory

Michel Bierlaire

Mathematical derivation of the choice model

We derive here the general random utility model. Although the derivation
is quite straightforward, it is also technical. It may be skipped without loss
of continuity in the course.

Consider the choice model with J
n
alternatives

P (i|C
n
) = Pr(U

in
≥ U

jn
, ∀j = 1, . . . , J

n
), (1)

where
U
in
= V

in
+ ε

in
. (2)

Denote by
ε
n
= (ε1n, . . . , εJnn)

the vector of J
n
error terms. If ε

n
is a multivariate random variable with

CDF F
εn
(ε1, . . . , εJn) and pdf

f
εn
(ε1, . . . , εJn) =

∂JnF

∂ε1 · · · ∂εJn
(ε1, . . . , εJn), (3)

then

P
n
(i|C

n
) =

∫
+∞

εi=−∞

∫
Vin−V1n+εi

ε1=−∞

· · ·

∫
Vin−Vi−1n+εi

εi−1=−∞

∫
Vin−Vi+1n+εi

εi+1=−∞

· · ·

∫
V1n−VJnn+ε1

εJn
=−∞

f
ε1n,ε2n,...,εJn

(ε1, ε2, . . . , εJn)dε. (4)

1



and

P
n
(i|C

n
) =

∫
+∞

ε=−∞

∂F
ε1n,ε2n,...,εJn

∂ε
i

(. . . , V
in
−V(i−1)n+ε, ε, V

in
−V(i+1)n+ε, . . .)dε.

(5)
Therefore, if the CDF is available in closed form, the choice model is obtained
by solving a uni-dimensional integral, which can be done analytically for
simple models, and numerically for more complex ones.

Proof. We prove the result for alternative 1 without loss of generality,
in order to simplify the notations.

Using (2) into (1), we obtain

P (1|C
n
) = Pr(V2n + ε2n ≤ V1n + ε1n, . . . , VJnn

+ ε
Jnn

≤ V1n + ε1n), (6)

or, gathering the random terms on one side, and the deterministic ones on
the other side,

P
n
(1|C

n
) = Pr(ε2n − ε1n ≤ V1n − V2n, . . . , εJnn − ε1n ≤ V1n − V

Jnn
). (7)

We consider the following change of variables:

ξ1n = ε1n, ξjn = ε
jn

− ε1n, j = 2, . . . , J
n
, (8)

that is, in matrix notations,

ξ
n
=





ξ1n
ξ2n
...

ξ(Jn−1)n

ξ
Jnn




=





1 0 · · · 0 0
−1 1 · · · 0 0

...
−1 0 · · · 1 0
−1 0 · · · 0 1









ε1n
ε2n
...

ε(Jn−1)n

ε
Jnn




= Mε

n
.

Note that the determinant of the change of variables matrix M is 1, so that
ε
n
and ξ

n
have the same pdf. The model in the new variables becomes

P
n
(1|C

n
) = Pr(ξ2n ≤ V1n − V2n, . . . , ξJnn ≤ V1n − V

Jnn
).

Therefore,

P
n
(1|C

n
) = F

ξ1n,ξ2n,...,ξJn
(+∞, V1n − V2n, . . . , V1n − V

Jnn
)
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from the definition of a cumulative distribution function. As the CDF is
obtained by integrating the pdf, we have

P
n
(1|C

n
) =

∫
+∞

ξ1=−∞

∫
V1n−V2n

ξ2=−∞

· · ·

∫
V1n−VJnn

ξJn
=−∞

f
ξ1n,ξ2n,...,ξJn

(ξ1, ξ2, . . . , ξJn)dξ.

Now we come back to the original variables, exploiting the fact that the pdf
of ξ

n
and ε

n
are identical:

P
n
(1|C

n
) =

∫
+∞

ε1=−∞

∫
V1n−V2n+ε1

ε2=−∞

· · ·

∫
V1n−VJnn+ε1

εJn
=−∞

f
ε1n,ε2n,...,εJn

(ε1, ε2, . . . , εJn)dε.

By integrating over all dimensions except the first one, we obtain:

P
n
(1|C

n
) =

∫
+∞

ε1=−∞

∂F
ε1n,ε2n,...,εJn

∂ε1
(ε1, V1n − V2n + ε1, . . . , V1n − V

Jnn
+ ε1)dε1.

�
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Theoretical foundations – 2.4 Random utility

theory

Michel Bierlaire

Practice quiz.

Consider the general choice model

P
n
(i|C

n
) =

∫
+∞

ε=−∞

∂F
ε1n,ε2n,...,εJn

∂ε
i

(. . . , V
in
−V(i−1)n+ε, ε, V

in
−V(i+1)n+ε, . . .)dε.

Derive it for alternative i in the binary case with C
n
= {i, j} and the CDF

of the error terms is given by

F
ε
(ε

i
, ε

j
) = e−e

−εi

e−e
−εj

. (1)

Hint

The change of variable t = −e−ε conveniently simplifies the integral.

1



Theoretical foundations – 2.4 Random utility

theory

Michel Bierlaire

Solution of the practice quiz.

The CDF of the error terms is given by

F
ε
(ε

i
, ε

j
) = e−e

−εi

e−e
−εj

. (1)

We have

P (i|{i, j}) =

∫
+∞

ε=−∞

∂F
ε

∂ε
i

(ε, V
i
− V

j
+ ε)dε. (2)

From (1), we have
∂F

ε

∂ε
i

(ε
i
, ε

j
) = e−e

−εi

e−e
−εj

e−εi . (3)

Therefore,

∂F
ε

∂ε
i

(ε, V
i
− V

j
+ ε) = e−e

−ε

e−e
−(Vi−Vj+ε)

e−ε = e−e
−ε

e−Ke
−ε

e−ε (4)

where
K = exp(−(V

i
− V

j
)). (5)

Therefore,

P (i|{i, j}) =

∫
+∞

ε=−∞

e−e
−ε

e−Ke
−ε

e−εdε. (6)

Define
t = −e−ε, dt = e−εdε,

to obtain

P (i|{i, j}) =

∫
0

t=−∞

e(1+K)tdt =
1

1 +K
. (7)

1



Using (5), we obtain the simple expression:

P (i|{i, j}) =
1

1 + exp(−(V
i
− V

j
))

=
eVi

eVi + eVj

. (8)

This happens to be the binary logit model.

2
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Binary choice
Model specification: the error term

Virginie Lurkin

Introduction to choice models



Binary choice model

Two alternatives: Cn = {i , j}

Uin = Vin + εin
Ujn = Vjn + εjn

Choice model

Pn(i |{i , j}) = Pr(Uin ≥ Ujn)
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Binary choice model

Two alternatives: Cn = {i , j}

Uin = Vin + εin
Ujn = Vjn + εjn

Choice model

Pn(i |{i , j}) = Pr(Uin ≥ Ujn)
= Pr(Vin + εin ≥ Vjn + εjn)
= Pr(Vin − Vjn ≥ εjn − εin)



Binary choice model

Two alternatives: Cn = {i , j}

Uin = Vin + εin
Ujn = Vjn + εjn

Choice model

Pn(i |{i , j}) = Pr(Uin ≥ Ujn)
= Pr(Vin + εin ≥ Vjn + εjn)
= Pr(Vin − Vjn ≥ εjn − εin)
= Pr (εn ≤ Vin − Vjn)

where εn = εjn − εin.



Error term

Three assumptions about the random variables εin and εjn

1. What’s their mean?

2. What’s their variance?

3. What’s their distribution?

Note

◮ For binary choice, it would be sufficient to make assumptions about
εn = εjn − εin.

◮ But we want to generalize later on.



The mean

Change of variables

◮ Define E[εin] = βin and E[εjn] = βjn.

◮ Define ε′in = εin − βin and ε′jn = εjn − βjn,

◮ so that E[ε′in] = E[ε′jn] = 0.

Choice model
Pn(i |{i , j}) =

Pr(Vin − Vjn ≥ εjn − εin)



The mean

Change of variables

◮ Define E[εin] = βin and E[εjn] = βjn.

◮ Define ε′in = εin − βin and ε′jn = εjn − βjn,

◮ so that E[ε′in] = E[ε′jn] = 0.

Choice model
Pn(i |{i , j}) =

Pr(Vin − Vjn ≥ εjn − εin) =
Pr(Vin − Vjn ≥ ε′jn + βjn − (ε′in + βin))



The mean

Change of variables

◮ Define E[εin] = βin and E[εjn] = βjn.

◮ Define ε′in = εin − βin and ε′jn = εjn − βjn,

◮ so that E[ε′in] = E[ε′jn] = 0.

Choice model
Pn(i |{i , j}) =

Pr(Vin − Vjn ≥ εjn − εin) =
Pr(Vin − Vjn ≥ ε′jn + βjn − (ε′in + βin)) =
Pr(Vin + βin − (Vjn + βjn) ≥ ε′jn − ε′in)



The mean

Change of variables

◮ Define E[εin] = βin and E[εjn] = βjn.

◮ Define ε′in = εin − βin and ε′jn = εjn − βjn,

◮ so that E[ε′in] = E[ε′jn] = 0.

Choice model
Pn(i |{i , j}) =

Pr(Vin − Vjn ≥ εjn − εin) =
Pr(Vin − Vjn ≥ ε′jn + βjn − (ε′in + βin)) =
Pr(Vin + βin − (Vjn + βjn) ≥ ε′jn − ε′in) =
Pr(Vin + βin − (Vjn + βjn) ≥ ε′n)

where ε′n = ε′jn − ε′in.



Alternative specific constant

◮ The mean of each error term can be moved to the deterministic part.

◮ It is captured by a parameter, to be estimated from data.

◮ It is called the alternative specific constant (ASC).

◮ Only the mean of the difference of the error terms is identified.



Shift invariance

The choice model is not affected by a uniform shift of all utility functions

Pn(i |{i , j}) = Pr(Uin ≥ Ujn) = Pr(Uin + K ≥ Ujn + K ) ∀K .



Alternative Specific Constant

Many equivalent specifications

Uin = Vin + βin +ε′in
Ujn = Vjn + βjn +ε′jn

or
Uin = Vin +ε′in
Ujn = Vjn + βjn − βin +ε′jn

or
Uin = Vin + βin − βjn +ε′in
Ujn = Vjn +ε′jn

In practice
Normalize one constant to zero and estimate βn = βjn − βin



Scale invariance

The choice model is not affected by a uniform scaling of all utility functions

Pn(i |{i , j}) = Pr(Uin ≥ Ujn) = Pr(αUin ≥ αUjn) ∀α > 0.



The variance

Var(αUin) = α2 Var(Uin)
Var(αUjn) = α2 Var(Ujn)

The variance is not identified

◮ As any α can be selected arbitrarily, any variance can be assumed.

◮ No way to identify the variance of the error terms from data.

◮ The scale has to be arbitrarily decided.

In practice
The scale parameter of the assumed distribution is normalized to 1.



The distribution

Assumption
εin and εjn are the maximum of many r.v. capturing unobservable attributes (e.g.
mood, experience), measurement and specification errors.

Gumbel theorem
The maximum of many i.i.d. random variables approximately follows an Extreme
Value distribution: EV(η, µ), with µ > 0.



The Extreme Value distribution EV(η, µ)

Probability density function (pdf)

f (t) = µe−µ(t−η)e−e−µ(t−η)

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞

f (t)dt

= e−e−µ(c−η)



The Extreme Value distribution

pdf EV(0,1)
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The Extreme Value distribution

Properties
If

ε ∼ EV(η, µ)

then

E[ε] = η +
γ

µ
and Var[ε] =

π2

6µ2

where γ is Euler’s constant.

Euler’s constant

γ = −

∫
∞

0

e−x ln x dx ≈ 0.5772



The distribution

Assumptions

◮ εin and εjn are i.i.d. Extreme Value.

◮ If an alternative specific constant is in the model, their mean can be
assumed to be any constant.

◮ It is convenient to set the location parameter to 0, so that
E[εin] = E[εjn] = γ/µ.

Distributions

εin ∼ EV (0, µ), εjn ∼ EV (0, µ)

Problem
We need the distribution of εn = εjn − εin



Logistic distribution

From the properties of the extreme value distribution, we have

εin ∼ EV(0, µ)
εjn ∼ EV(0, µ)

εn = εjn − εin ∼ Logistic(0, µ)



The Logistic distribution: Logistic(η,µ)

Probability density function (pdf)

f (t) =
µe−µ(t−η)

(1 + e−µ(t−η))2

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞

f (t)dt =
1

1 + e−µ(c−η)

with µ > 0.



The binary logit model

Choice model

Pn(i |{i , j}) = Pr (εn ≤ Vin − Vjn) = F
ε
(Vin − Vjn)

The binary logit model

Pn(i |{i , j}) =
1

1 + e−µ(Vin−Vjn)
=

eµVin

eµVin + eµVjn



Binary choice – 3.1 Model specification: the

error term

Michel Bierlaire

Practice quiz.

Consider the utility functions of individual n for two alternatives i and j

as follows:

Uin = Vin + εin, (1)

Ujn = Vjn + εjn (2)

with the same notations as in the video. The binary probit model is obtained
based on the assumption that the error terms are i.i.d. normally distributed
across n. Derive the binary probit model Pn(i).

Hints

• Remember that the utility difference matters.

• Remember the definition of a cumulative distribution function (CDF).

1



Binary choice – 3.1 Model specification: the

error term

Michel Bierlaire

Solution of the practice quiz.

The error terms represent everything that is unknown to the analyst. A
possible assumption is that all these elements add up to form the error terms.
Then, invoking the central limit theorem, they follow a normal distribution.

Suppose that ε
in
and ε

jn
are both normal with zero mean, and variance σ2

i

and σ2

j
respectively. They are possibly correlated with covariance σ

ij
. Note

that these parameters do not have an index n, to reflect the i.i.d. assumption.
They are constant across individuals. Under these assumptions the term
ε
n
= ε

jn
− ε

in
is also normally distributed with mean zero and variance

σ2 = σ2

i
+σ2

j
− 2σ

ij
. We can now solve for the choice probabilities as follows:

P
n
(i) = Pr(ε

jn
− ε

in
≤ V

in
− V

jn
) = Pr(ε

n
≤ V

in
− V

jn
), (1)

from the random utility model. We now use the fact that ε
n
is normally

distributed to obtain

P
n
(i) =

∫
Vin−Vjn

ε=−∞

1

σ
√
2π

exp

[
−
1

2

( ε

σ

)2
]
dε. (2)

By changing the variable u = ε/σ so that du = dε/σ, we obtain a standard
normal, and

P
n
(i) =

1
√
2π

∫
(Vin−Vjn)/σ

u=−∞

exp

[
−
1

2
u2

]
du, (3)

which is

P
n
(i) = Φ

(
V
in
− V

jn

σ

)
, (4)

where Φ(·) denotes the CDF of a standardized normal distribution.

1



Binary choice – 3.2 Apply the model on data

Michel Bierlaire

Practice quiz: alternative specific constants.

You have estimated the parameters of the following mode choice model,
involving two transportation modes (index n has been dropped for notational
convenience):

Ubicycle = ASCbicycle + βdistance · distance + εbicycle (1)

Umetro = ASCmetro + βtime · timemetro + βcost · costmetro + εmetro (2)

where distance is the distance of the trip in kilometers, costmetro is the cost in
Swiss francs (CHF) of the trip by metro and timemetro is the time in minutes
of the trip by metro. εbicycle and εmetro are random terms.

In order to estimate the model, one of the two alternative specific con-
stants must be normalized to zero. Table 1 reports the estimated parameters
for each normalization. However, it is incomplete. First, complete the second
column of Table 1 corresponding to the normalization ASCmetro = 0.

Parameters Normalization 1 Normalization 2
ASCbicycle 0
ASCmetro 3 0
βdistance -0.8
βtime -0.5
βcost -1

Table 1: Estimated parameters

Perform the following tasks for a respondent with a trip of 10 kilometers
that takes 20 minutes and costs 2.2 CHF by metro:

1. calculate the choice probabilities in the case of a logit model with the
parameter estimates with normalization 1, and the scale parameter set
to one,

1



2. calculate the choice probabilities in the case of a probit model with the
parameter estimates with normalization 1, and the scale parameter set
to one,

3. calculate the choice probabilities in the case of a logit model with the
parameter estimates with normalization 2, and the scale parameter set
to one,

4. calculate the choice probabilities in the case of a probit model with the
parameter estimates with normalization 2, and the scale parameter set
to one.

2



Binary choice – 3.2 Apply the model on data

Michel Bierlaire

Solution of the practice quiz: alternative specific constants.

In order to complete the table, we have to remember that only the dif-
ference between the constants can be identified. This difference should be
the same for any normalization. As ASCbicycle − ASCmetro = −3 with the
first normalization, it has to be the same for the second one. Therefore,
ASCbicycle = −3. The normalization of the constants has no impact on the
coefficients of the attributes. Therefore, the β parameters remain unchanged.
The result is:

Parameters Normalization 1 Normalization 2
ASCbicycle 0 -3
ASCmetro 3 0
βdistance -0.8 -0.8
βtime -0.5 -0.5
βcost -1 -1

Now, in order to calculate the choice probabilities with various models, we
need first to calculate the utility functions for the scenario that is considered.
We have, for the first normalization,

Vbicycle = 0− 0.8 · 10 = −8,

Vmetro = 3− 0.5 · 20− 1 · 2.2 = −9.2.

And for the second one,

Vbicycle = −3− 0.8 · 10 = −11,

Vmetro = 0− 0.5 · 20− 1 · 2.2 = −12.2.

1. The logit model with the parameters of normalization 1:

1



P (bicycle) =
exp(Vbicycle)

exp(Vbicycle) + exp(Vmetro)
=

exp(−8)

exp(−8) + exp(−9.2)
= 0.77

and

P (metro) =
exp(Vmetro)

exp(Vbicycle) + exp(Vmetro)
=

exp(−9.2)

exp(−8) + exp(−9.2)
= 0.23.

2. The probit model with the parameters of normalization 1:

P (bicycle) = Φ(Vbicycle − Vmetro) = Φ(−8 + 9.2) = Φ(1.2) = 0.88

and

P (metro) = Φ(Vmetro − Vbicycle) = Φ(−9.2 + 8) = Φ(−1.2) = 0.12

3. The logit model with the parameters of normalization 2:

P (bicycle) =
exp(Vbicycle)

exp(Vbicycle) + exp(Vmetro)
=

exp(−11)

exp(−11) + exp(−12.2)
= 0.77

and

P (metro) =
exp(Vmetro)

exp(Vbicycle) + exp(Vmetro)
=

exp(−12.2)

exp(−11) + exp(−12.2)
= 0.23.

4. The probit model with the parameters of normalization 2:

P (bicycle) = Φ(Vbicycle − Vmetro) = Φ(−11 + 12.2) = Φ(1.2) = 0.88

and

P (metro) = Φ(Vmetro − Vbicycle) = Φ(−12.2 + 11) = Φ(−1.2) = 0.12

It can be seen that the choice probability does not depend on the normaliza-
tion of the constants.
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Binary choice – 3.2 Apply the model on data

Michel Bierlaire

Practice quiz: scale.

You have estimated the parameters of the following mode choice model,
involving two transportation modes (index n has been dropped for notational
convenience):

Ubicycle = ASCbicycle + βdistance · distance + εbicycle (1)

Umetro = ASCmetro + βtime · timemetro + βcost · costmetro + εmetro (2)

where distance is the distance of the trip in kilometers, costmetro is the cost in
Swiss francs (CHF) of the trip by metro and timemetro is the time in minutes
of the trip by metro. εbicycle and εmetro are random terms. The parameter
estimates are ASCbicycle = 0, ASCmetro = 3, βdistance = −0.8, βtime = −0.5
and βcost = −1.

Calculate the choice probabilities for a respondent with a trip of 10 kilo-
meters that takes 20 minutes and costs 2.2 CHF by metro in the following
cases:

1. using a logit model with scale parameter µ = 0.1,

2. using a logit model with scale parameter µ = 10,

3. using a probit model with scale parameter σ = 0.1,

4. using a probit model with scale parameter σ = 10.

Comment on these results.

1



Binary choice – 3.2 Apply the model on data

Michel Bierlaire

Solution of the practice quiz: scale.

The formulas for the logit model are:

P logit(bicycle;µ) =
exp (µVbicycle)

exp (µVbicycle) + exp (µVmetro)
,

and
P logit(metro;µ) = 1− P logit(bicycle;µ).

The formulas for the probit model are:

P probit(bicycle; σ) = Φ

(
Vbicycle − Vmetro

σ

)
,

and
P probit(metro; σ) = 1− P probit(bicycle).

In order to calculate the choice probabilities with various models, we need
first to calculate the utility functions for the scenario that is considered. We
have

Vbicycle = 0− 0.8 · 10 = −8,

Vmetro = 3− 0.5 · 20− 1 · 2.2 = −9.2.

1. The logit model with µ = 0.1:

P logit(bicycle; 0.1) =
exp(µVbicycle)

exp(µVbicycle) + exp(µVmetro)

=
exp(−0.8)

exp(−0.8) + exp(−0.92)

= 0.53,

1



and

P logit(metro; 0.1) =
exp(Vmetro)

exp(Vbicycle) + exp(Vmetro)

=
exp(−0.92)

exp(−0.8) + exp(−0.92)

= 0.47.

2. The logit model with µ = 10:

P logit(bicycle; 10) =
exp(µVbicycle)

exp(µVbicycle) + exp(µVmetro)

=
exp(−80)

exp(−80) + exp(−92)

= 0.999994,

and

P logit(metro; 10) =
exp(Vmetro)

exp(Vbicycle) + exp(Vmetro)

=
exp(−92)

exp(−80) + exp(−92)

= 0.000006.

3. The probit model with σ = 0.1:

P probit(bicycle; 0.1) = Φ((Vbicycle − Vmetro)/σ) = Φ(12) ≈ 1,

and

P probit(metro; 0.1) = Φ(Vmetro − Vbicycle) = Φ(−12) ≈ 0.

4. The probit model with σ = 10:

P probit(bicycle; 10) = Φ((Vbicycle − Vmetro)/σ) = Φ(0.12) = 0.55,

and

P probit(metro; 10) = Φ(Vmetro − Vbicycle) = Φ(−0.12) = 0.45.

2



The results are summarized in the following table:

Logit Probit
µ = 0.1 µ = 10 σ = 0.1 σ = 10

P (bicycle) 0.53 0.999994 1 0.55
P (metro) 0.47 0.000006 0 0.45

This exercise illustrates the importance of the scale parameter in the
calculation of the choice probability. If the β’s are set, varying the scale
parameter modifies the choice probability. As the scale is normalized to one
at the estimation stage, it is tempting to forget about it. But it is embedded
in the values of the coefficients.

The results also illustrate the limiting cases of the models:

Probit There are two limiting cases of a probit model of special interest,
both involving extreme values of the scale parameter. The first case is
for σ → 0:

lim
σ→0

P
n
(i) =

{
1 if V

in
− V

jn
> 0,

0 if V
in
− V

jn
< 0;

this is, as σ → 0, the variance vanishes and the choice model is deter-
ministic. On the other hand, when σ → ∞, the choice probabilities
become 1/2. Intuitively the model predicts equal probability of choice
for each alternative irrespectively of Vmetro and Vbicycle.

Logit As with probit, if the V ’s are set, there are two limiting cases of a
binary logit model that are of special interest. The first case is for
µ → ∞:

lim
µ→∞

P
n
(i) =

{
1 if V

in
− V

jn
> 0,

0 if V
in
− V

jn
< 0;

that is, as µ → ∞, the variance vanishes and the choice model is
deterministic. On the other hand, when µ → 0, the choice probabilities
become 1/2.

Note that, for probit, the variance is proportional to the (squared) scale
parameter, while for logit, it is inversely proportional.
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Binary choice – 3.3 Maximum likelihood

estimation

Michel Bierlaire

Maximum likelihood estimation.

We now estimate the values of the unknown parameters β1,. . . ,βK
from

a sample of observations drawn at random from the population. Each obser-
vation of this sample consists of the following:

1. An indicator variable defined as

y
in
=

{
1 if individual n chose alternative i,

0 if individual n chose alternative j.

2. Two vectors of explanatory variables x
in
= h(z

in
, S

n
) and x

jn
= h(z

jn
, S

n
),

each containing K values.

For notational convenience, we also define y
jn

= 1− y
in
.

As an example, consider a transportation mode choice problem (train or
car), where the utility functions are specified as reported in Table 1. Consider
also the sample of 3 individuals presented in Table 2.

Using the above notations, we have

y
i1 = 1, y

j1 = 0, y
i2 = 0, y

j2 = 1, y
i3 = 0, y

j3 = 1.

The values of the variables x are:

x
i1= (1 5 0 1.17 0 0 1 0 0),

x
j1= (0 40 0 0 2.5 0 0 0 0),
x
i2= (1 8.33 2 0 0 0 0 1 1),

x
j2= (0 7.8 0 0 1.75 1 0 0 0),
x
i3= (1 3.2 0 2.55 0 0 0 1 0),

x
j3= (0 40 0 0 2.67 0 0 0 0).

1



Car Train
β1 1 0
β2 cost of trip by car cost of trip by train
β3 travel time by car (hours) if

trip purpose is work, 0 other-
wise

0

β4 travel time by car (hours) if
trip purpose is not work, 0 oth-
erwise

0

β5 0 travel time by train (hours)
β6 0 1 if first class is preferred, 0

otherwise
β7 1 if commuter is male, 0 other-

wise
0

β8 1 if commuter is the main
earner in the family, 0 other-
wise

0

β9 1 if commuter had a fixed ar-
rival time, 0 otherwise

0

Table 1: Specification table of the binary mode choice model

The choice model is

P
n
(i) =

eVin

eVin + eVjn

, (1)

where

V
in
=

K∑

k=1

β
k
x
ink

(2)

V
jn

=
K∑

k=1

β
k
x
jnk

. (3)

Given a sample of N observations, we want to find estimates β̂1, . . . , β̂K

that have some or all of the desirable properties of statistical estimators. We
consider in detail the most widely used estimation procedure — maximum
likelihood. The maximum likelihood estimators have the following desired
properties:

2



Individual 1 Individual 2 Individual 3
Train cost 40.00 7.80 40.00
Car cost 5.00 8.33 3.20

Train travel time 2.50 1.75 2.67
Car travel time 1.17 2.00 2.55

Gender M F F
Trip purpose Not work Work Not work

Class Second First Second
Main earner No Yes Yes
Arrival time Variable Fixed Variable

Choice Train Car Car

Table 2: A sample of three individuals

1. They are consistent in the sense of convergence to true values as sample
size gets larger.

2. They are asymptotically normally distributed in the sense of the Cen-
tral Limit Theorem.

3. They are asymptotically efficient, and hence their variance attains the
Cramer-Rao lower bound.

The maximum likelihood estimation procedure is conceptually quite straight-
forward. It consists in identifying the value of the unknown parameters such
that the joint probability of the observed choices as predicted by the model
is the highest possible. This joint probability is called the likelihood of the
sample. And it is a function of the parameters of the model.

In the above example, the likelihood of the sample of 3 individuals is
calculated as follows:

• individual 1 has chosen the car, and this choice is predicted by the
model with probability P1(i),

• individual 2 has chosen the train, and this choice is predicted by the
model with probability P2(j),

• individual 3 has chosen the train, and this choice is predicted by the
model with probability P3(j).
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Consequently, the probability that the model predicts all three observations
is

L∗(β1, . . . , β9) = P1(i)P2(j)P3(j). (4)

If this value is calculated for β
k
= 0, k = 1, . . . , K, we obtain

L∗ =
1

2
·
1

2
·
1

2
= 0.125. (5)

If this value is calculated for the values of

β = (3.04,−0.0527,−2.66,−2.22,−0.576, 0.961,−0.850, 0.383,−0.624),

we have
L∗ = 0.947 · 0.924 · 0.225 = 0.197. (6)

This value of the likelihood is higher. But we do not know if it is the highest
possible.

This can be generalized to a sample of N observations assumed to be
independently drawn from the population. As discussed above, the likeli-
hood of the sample is the product of the likelihoods (or probabilities) of the
individual observations. It is defined as follows:

L∗(β1, β2, . . . , βK
) =

N∏

n=1

P
n
(i)yinP

n
(j)yjn , (7)

where P
n
(i) and P

n
(j) are functions of β1,. . . ,βK

. Note that each factor
represents the choice probability of the chosen alternative. Indeed,

P
n
(i)yinP

n
(j)yjn =

{
P
n
(i) if y

in
= 1, y

jn
= 0

P
n
(j) if y

in
= 0, y

jn
= 1.

It is more convenient to analyze the logarithm of L∗, denoted as L and called
the log likelihood, because the logarithm of a product of elements is easier to
manipulate, being equal to the sum of the logarithms of the elements. More-
over, the value of the likelihood is always between 0 and 1, and usually very
small, especially when N is large. The range of values of the log likelihood
is much larger, as it can take any negative value (from −∞ to 0) and can be
represented better in computers. The log likelihood is written as follows:

L(β1, . . . , βK
) =

N∑

n=1

(y
in
lnP

n
(i) + y

jn
lnP

n
(j)). (8)
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where β is the vector with entries β1, . . . , βK
. We are looking for estimates

β̂1, β̂2,. . . ,β̂K
that solve

maxL(β̂) = L(β̂1, β̂2, . . . , β̂K
), (9)

where β̂ is the vector with entries β̂1, β̂2, . . . , β̂K
. The optimization problem

is solved using dedicated algorithms.
If a solution exists, it must satisfy the necessary first order conditions:

∂L

∂β
k

(β̂) =
N∑

n=1

(
y
in

∂P
n
(i)/∂β

k

P
n
(i)

+ y
jn

∂P
n
(j)/∂β

k

P
n
(j)

)
= 0, k = 1, . . . , K, (10)

or in vector form
∂L

∂β
(β̂) = 0. (11)

The term ∂L(β̂)/∂β is the vector of first derivatives of the log likelihood
function with respect to the unknown parameters, evaluated at the estimated
value of the parameters. Each entry k of the vector ∂L(β̂)/∂β represents the
slope of the multi-dimensional log likelihood function along the corresponding
kth axis. If β̂ corresponds to a maximum of the function, all these slopes
must be zero, justifying (10).

Solving the optimization problem requires an iterative procedure. It
starts with arbitrary values for the parameters (provided by the analyst,
or all set to zero if no value can be guessed). If the first derivatives of the log
likelihood function are zero, a solution has been found. If not, they provide
information about the slope of the function, and a direction of “hill-climbing”
can be identified. This direction is followed for a while, until a new set of
values is found, corresponding to a higher log likelihood. The process is
restarted from this new set of values, until convergence to the maximum is
reached.

A family of algorithms commonly used in practice is called Newton’s
method. At each iteration ℓ, a quadratic model of the log likelihood function
is built around the current iterate β(ℓ). This quadratic model is such that
the value of the model and of its first and second derivatives are the same at
β(ℓ) as the log likelihood function:

m(β; β(ℓ)) = L(β(ℓ))+ (β−β(ℓ))T∇L(β(ℓ))+
1

2
(β−β(ℓ))T∇2L(β(ℓ))(β−β(ℓ)),

(12)
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where ∇L(β(ℓ)) is the gradient, that is the vector of the first derivatives of
the log likelihood function evaluated at β(ℓ), and ∇2L(β(ℓ)) is the matrix of
the second derivatives of the log likelihood function evaluated at β(ℓ). The
kth entry of L(β(ℓ)) is ∂L(β(ℓ))/∂β

k
, and the entry in the kth row and the

mth column of ∇2L(β(ℓ)) is
∂2L(β(ℓ))

∂β
k
∂β

m

. (13)

The approximation of the log likelihood function by the quadratic model
is illustrated in Figure 1 for a log likelihood function with only one parameter,
where both the log likelihood function and the quadratic model at β(ℓ) are
displayed. Note that both functions coincide at β(ℓ), and have the same slope
(first derivative) and curvature (second derivative) at that point. The next
iterate is selected as the value of the parameters maximizing the quadratic
model, that is

β(ℓ+1) = β(k) −∇2L(β(ℓ))−1∇(β(ℓ)), (14)

as illustrated in Figures 1 and 2 for two successive iterations.

−19

−18

−17

−16

−15

−14

−13

−12

β(ℓ+1) β(ℓ)

β

L(β)
m(β; β(ℓ))

Figure 1: Illustration of Newton’s method for optimization

It is numerically obtained by solving the system of linear equations

∇2L(β(ℓ))d = −∇(β(ℓ)), (15)
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to obtain the direction d, and then calculating

β(ℓ+1) = β(ℓ) + d. (16)

The procedure continues until the gradient is sufficiently close to zero, de-
pending on the level of precision that is required. In practice, it happens
when the norm of the gradient is below a user-specified threshold Γ, that is

∥∥∥∥
∂L(β)

∂β

∥∥∥∥ =

√√√√∑

k

(
∂L(β)

∂β
k

)2

≤ Γ.

A typical value for Γ is 10−6.
Actually, the method described above is not guaranteed to converge, and

variants involving a scaled version of d have to be used, that is

β(ℓ+1) = β(ℓ) + αd, α > 0. (17)

We refer the reader to Bierlaire (2015) for more details on optimization al-
gorithms.
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β(ℓ) β(ℓ+1)

β

L(β)
m(β; β(ℓ))

Figure 2: Illustration of Newton’s method for optimization: second iteration
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Binary choice – 3.3 Maximum likelihood

estimation

Michel Bierlaire

Practice quiz.

Calculate the first order optimality conditions of the maximum likelihood
optimization problem for the binary logit model with a linear-in-parameters
specification of the utility functions.
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Binary choice – 3.3 Maximum likelihood

estimation

Michel Bierlaire

Solution of the practice quiz.

The first order necessary optimality conditions are

∂L

∂βk

(β̂) = 0, k = 1, . . . , K, (1)

and the log likelihood is

L(β1, . . . , βK) =
N∑

n=1

(yin lnPn(i) + yjn lnPn(j)). (2)

In the case of the logit model

Pn(i) =
eVin

eVin + eVjn

, (3)

where
Vin =

∑

k

βkxink, (4)

and xin is the vector of explanatory variables associated with alternative i.
Note that

lnPn(i) = Vin − ln(eVin + eVjn). (5)

Therefore,

∂ lnPn(i)

∂Vin

= 1− Pn(i), (6)

∂ lnPn(i)

∂Vjn

= −Pn(j). (7)
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Consequently, the partial derivative of (2) with respect to Vin is

∂L

∂Vin

=
N∑

n=1

(yin(1− Pn(i))− yjnPn(i)) =
N∑

n=1

yin − Pn(i), (8)

as yin + yjn = 1. The partial derivative of (2) with respect to βk is

∂L

βk

=
N∑

n=1

∑

i

∂L

∂Vin

∂Vin

∂βk

=
N∑

n=1

(yin − Pn(i))xink + (yjn − Pn(j))xjnk, (9)

as the utility function (4) is linear. As yin + yjn = 1 and Pn(i) + Pn(j) = 1,
this simplifies to

∂L

βk

=
N∑

n=1

(yin − Pn(i))(xink − xjnk). (10)

Therefore, the first order necessary optimality conditions are

N∑

n=1

(yin − Pn(i))(xink − xjnk) = 0, ∀k = 1, . . . , K. (11)
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Binary choice – 3.3 Maximum likelihood

estimation

Michel Bierlaire

Output of the estimation.

We explain here the various outputs from the maximum likelihood esti-
mation procedure.

Solution of the maximum likelihood estimation

The main outputs of the maximum likelihood estimation procedure are

• the parameter estimates β̂,

• the value of the log likelihood function at the parameter estimates L(β̂).

Most estimation software packages provide additional information after the
estimation, in order to help appreciating the quality of the results. We sum-
marize the most common ones here.

Variance-covariance matrix of the estimates

In addition to play a role in the optimization algorithm, the second deriva-
tives matrix of the log likelihood function ∇2L(β) is also used to compute an
estimate of the variance-covariance matrix of the parameter estimates, from
which standard errors, t statistics and p values are generated.

Under relatively general conditions, the asymptotic variance-covariance
matrix of the maximum likelihood estimates is given by the Cramer-Rao
bound

− E
[
∇2L(β)

]
−1

=

{
−E

[
∂2L(β)

∂β∂βT

]}
−1

. (1)

1



From the second order optimality conditions, this matrix is negative def-
inite if the local maximum is unique, which is the algebraic equivalent of the
local strict concavity of the log likelihood function.

Since we do not know the actual values of the parameters at which to
evaluate the second derivatives, or the distribution of x

in
and x

jn
over which

to take their expected value, we estimate the variance-covariance matrix by
evaluating the second derivatives at the estimated parameters β̂ and the
sample distribution of x

in
and x

jn
instead of their true distribution. Thus

we use

E

[
∂2L(β)

∂β
k
∂β

m

]
≈

N∑

n=1

[
∂2 (y

in
lnP

n
(i) + y

jn
lnP

n
(j))

∂β
k
∂β

m

]

β=β̂

, (2)

as a consistent estimator of the matrix of second derivatives. Denote this
matrix as Â. Therefore, an estimate of the Cramer-Rao bound (1) is given
by

Σ̂CR

β
= −Â−1. (3)

If the matrix Â is negative definite then −Â is invertible and the Cramer-Rao
bound is positive definite. Note that this may not always be the case, as it
depends on the model and the sample.

Another consistent estimator of the (negative of the) second derivatives
matrix can be obtained by the matrix of the cross-products of first derivatives
as follows:

− E

[
∂2L(β)

∂β∂βT

]
≈

n∑

n=1

∇L
n
(β̂)∇L

n
(β̂)T = B̂, (4)

where
∇L

n
(β̂) = ∇(y

in
lnP

n
(i) + y

jn
lnP

n
(j)) (5)

is the gradient vector of the log likelihood of observation n. As the gradient
∇L

n
(β̂) is a column vector of dimension K×1, and its transpose ∇L

n
(β̂)T is

a row vector of size 1×K, the product ∇L
n
(β̂)∇L

n
(β̂)T appearing for each

observation n in (4) is a rank one matrix of size K ×K. The approximation

B̂ is employed by the BHHH algorithm (Berndt et al., 1974). It can also
provide an estimate of the variance-covariance matrix:

Σ̂BHHH

β
= B̂−1, (6)
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although this estimate is rarely used. Instead, B̂ is used to derive a third
consistent estimator of the variance-covariance matrix of the parameters,
defined as

Σ̂R

β
= (−Â)−1 B̂ (−Â)−1 = Σ̂CR

β
(Σ̂BHHH

β
)−1 Σ̂CR

β
. (7)

It is called the robust estimator, or sometimes the sandwich estimator,
due to the form of equation (7).

When the true likelihood function is maximized, these estimators are
asymptotically equivalent, and the Cramer-Rao bound (1) should be pre-
ferred (Kauermann and Carroll, 2001). When other consistent estimators
are used, different from the maximum likelihood, the robust estimator (7)
must be used (White, 1982).

Standard errors

Consider an estimate β̂
k
of the parameter β

k
, and consider Σ̂

β
an estimate of

the variance-covariance matrix of the estimates (typically, the Rao-Cramer
bound or the robust estimator, as described above). The standard error of
the parameter is defined as

σ
k
=

√
Σ̂

β
(k, k), (8)

where Σ̂
β
(k, k) is the kth entry of the diagonal of the matrix Σ̂

β
.

t statistics

Consider an estimate β̂
k
of the parameter β

k
, and σ

k
its standard error. Its

t statistic is defined as

t
k
=

β̂
k

σ
k

. (9)

It is typically used to test the null hypothesis that the true value of the
parameter is zero. This hypothesis can be rejected with 95% of confidence if

|t
k
| ≥ 1.96. (10)
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p value

Consider an estimate β̂
k
of the parameter β

k
, and t

k
its t statistic. The p

value is calculated as
p
k
= 2(1− Φ(t

k
)), (11)

where Φ(·) is the cumulative density function of the univariate standard
normal distribution.

It conveys the exact same information as the t statistic, presented in a
different way. It is the probability to get a t statistic at least as large (in
absolute value) as the one reported, under the null hypothesis that β

k
= 0.

The null hypothesis can be rejected with level of confidence 1− p
k
.

Goodness of fit

Unlike linear regression, there are several measures of goodness of fit. None
of them can be used in an absolute way. They can only be used to compare
two models.

Clearly, an obvious measure is the log likelihood itself. It is common to
compare it with a benchmark model. For instance, consider a trivial model
with no parameter, associating a probability of 50% with each of the two
alternatives:

P
n
(i) = P

n
(j) =

1

2
.

The log likelihood of the sample is therefore

L(0) = log(
1

2N
) = −N log(2),

where N is the number of observations. It can be used to calculate the
likelihood ratio statistic:

−2(L(0)− L(β̂)).

It is called as such because it is the logarithm of the ratio of the respective
likelihood values.

The statistic is used to test the null hypothesis H0 that the estimated
model is equivalent to the equal probability model. Under H0, −2(L(0) −

L(β̂)) is asymptotically distributed as χ2 with K degrees of freedom.
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It can also be used to compute a normalized measure of goodness of fit:

ρ2 = 1−
L(β̂)

L(0)
. (12)

Such a measure has been derived to somehow mimic the R2 in linear regres-
sion. However, in this case, it is not the square of anything. If the estimated
model has the same log likelihood as the equal probability model, ρ2 = 0. If
the estimated model perfectly fits the data, that is if L(β̂) = 0, then ρ2 = 1.
As mentioned above, the value itself cannot be interpreted, and it must be
used only to compare two models. In particular, unlike linear regression, it
is possible to have a good model with a low value of ρ2, and a bad model
with a high value.

An important limitation of this goodness of fit measure is that it is mono-
tonic in the number of parameters of the model. It means that ρ2 mechani-
cally increases each time an additional variable is added to the model, even
if this variable does not explain anything. Therefore, the following corrected
measure is often preferred:

ρ̄2 = 1−
L(β̂)−K

L(0)
.
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My first model with Pythonbiogeme
Specification and estimation of the parameters

Michel Bierlaire

Introduction to choice models



The case study

Swissmetro

◮ a revolutionary mag-lev
underground system in
Switzerland,

◮ 500 km/h.
swissmetro.ch

Transportation mode choice

1. Train

2. Swissmetro

3. Car



The model

Variables

◮ Travel time: TRAIN TT, SM TT, CAR TT

◮ Travel cost: TRAIN CO, SM CO, CAR CO

◮ Yearly subscription: GA

Utility functions

◮ ASC TRAIN + B TIME * TRAIN TT + B COST * TRAIN CO * (GA = 0)

◮ B TIME * SM TT + B COST * SM CO * (GA = 0)

◮ ASC CAR + B TIME * CAR TT + B COST * CAR CO



Biogeme: an open-source software for

estimating choice models – 4.2 Using Biogeme

Michel Bierlaire

Practice quiz: back to the simple example

Consider the simple example about the choice between purchasing an
electric car or not, presented in Section 1.2. The data is summarized in the
contingency table below

Age
20–39 40–64 65+

Electric 65 55 5
Not electric 835 1045 495

The model has three parameters:

• P(electric | age 20–39) = π1,

• P(electric | age 40–64) = π2,

• P(electric | age 65+) = π3.

We want to calculate the maximum likelihood estimates of these param-
eters using Biogeme. To do so, perform the following steps:

1. Prepare a data file, called for instance small.dat. The first row should
contain the name of each variable. Make sure that these names do
not contain blank spaces, and start with a letter. Remember that
these names are case sensitive, so that “Electric” is not the same as
“electric”. Each subsequent row should be associated with a cell of
the contingency table. So the first question is: how many columns
should this file contain, and what are the names of the corresponding
variables?

1



2. Download the file maxlike question.py (from the edX webpage) and
use it as a template for the model specification file. Edit the file and
include the formula for the contribution of each row of the data file to
the log likelihood function.

3. Estimate the parameters π1, π2, π3 using Biogeme.

4. Open the HTML output file and verify that the values obtained are the
same as reported in the course.
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Biogeme: an open-source software for

estimating choice models – 4.2 Using Biogeme

Michel Bierlaire

Solution to the practice quiz: back to the simple example

1. Each cell of the contingency table contains three pieces of information:
the age, the electric car ownership, and the number of corresponding
individuals in the sample. Therefore, we define three headers in the
data file: Age, Electric and Number. Download the file small.dat

(from the edX webpage).

2. Download the model specification file maxlike.py (from the edX web-
page) and read the included comments.

3. π1 = 0.0722, π2 = 0.05, π3 = 0.01.

4. Download the output file maxlike.html (from the edX webpage).

1



Biogeme: an open-source software for

estimating choice models – 4.2 Using Biogeme

Michel Bierlaire

Practice quiz: specification coding

Description

The goal of this exercise is to become familiar with the Python syntax in
Biogeme and learn how to code various hypotheses regarding the factors
influencing the choice for a given application of interest. In order to achieve
this goal you will specify and estimate mode choice models for the Swissmetro

case study. In each step of the exercise you will be asked to provide basic
interpretations of the specifications you tested.

The data is provided in the file swissmetro.dat (from the edX web-
page). The case study includes 3 alternatives, namely train, swissmetro and
car. The choice variable is coded as 1 if the individual chose train, 2 if
the individual chose swissmetro and 3 if the individual chose car. A choice
variable equal to 0 indicates that we don’t know what the individual chose
(see swissmetroDescription.pdf (from the edX webpage) for a complete
description of the data set.) In this exercise we consider a binary choice
model between train and car. To do so, we exclude observations for which
the CHOICE variable is equal to 0 or 2. Furthermore, we only consider work
related trips. To do so, we exclude observations for which PURPOSE is differ-
ent than 1 (commuter) or 3 (business). The following code is included in the
model specification file:

exclude = (TRAIN_AV_SP == 0) + (CAR_AV_SP == 0) +

( CHOICE == 0 ) + ( CHOICE == 2 ) +

(( PURPOSE != 1 ) * ( PURPOSE != 3 )) > 0

1



BIOGEME_OBJECT.EXCLUDE = exclude

Note that the output of a logical operator is 1 if true and 0 if false.
Therefore, the “+” acts as a “or” and the “*” acts as a “and” in the above
formula.

1 Base model

Download and estimate the v422 binary SM base.py (from the edX web-
page) file with the example model specification. It is a binary logit model
between car and train. This is your base model. Use it as template to perform
the following exercises.

2 Alternative specific attributes — I

Create a specification file v422 binary SM specific.py for a binary logit
model with alternative specific coefficients for the cost variables of the two
alternatives, i.e. car cost and train cost, in the utility functions of the car
and train alternatives, respectively.

What behavioral assumption of the base model is relaxed by including
the alternative specific parameters for the cost variables?

3 Alternative specific attributes — II

Copy the v422 binary SM specific.py into a new file called
v422 binary SM specificHeadway.py. Edit this file to include the train

headway TRAIN HE in the utility function of the train alternative. The “head-
way” is the time separating the departure of two consecutive trains. It is
actually the inverse of the frequency of the line. Estimate the model and
answer the following questions:

1. What is the underlying behavioral assumption associated with the in-
clusion of that attribute?

2. Is the sign of the coefficient estimate consistent with your expectations?
Why?

2



4 Socioeconomic characteristics — I

Copy the v422 binary SM specificHeadway.py into a new file called
v422 binary SM specificHeadwaySocioec.py. Edit this file to include the
following interactions of socioeconomic variables with the alternative specific
constant (ASC), in the utility function of the train alternative:

1. define a variable SENIOR for people above the age of 65 and interact it
with the ASC, and

2. interact the variable for people owning a Swiss annual season ticket GA
with the ASC.

Estimate the model and answer the following questions:

1. What does the specification with the variables for (i) senior people and
(ii) season ticket owners in the utility of the train alternative capture?

2. What does the sign of the parameter estimate for senior people reflect
with respect to the preferences of older people in the sample?

3. Is the sign of the parameter estimate associated with the season ticket
owners according to your expectations? Why?

5 Socioeconomic characteristics — II

Copy the v422 binary SM specificHeadwaySocioec.py into a new file called
v422 binary SM specificHeadwaySocioec2.py. Edit this file to include the
two variables of the previous exercise (SENIOR and GA) in both utilities and
estimate the model once again. Answer the following questions:

1. What happens when you include the socioeconomic variables in both
utilities?

2. Why does it happen?
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Biogeme: an open-source software for

estimating choice models – 4.2 Using Biogeme

Michel Bierlaire

Solution to practice quiz: specification coding

2 Alternative specific attributes — I

Download the model specification file

v422 binary SM specific.py (from the edX webpage)

and the corresponding output file

v422 binary SM specific.html (from the edX webpage)

The specification relaxes the assumption that the influence of the cost on
the utility is the same for each alternative.

3 Alternative specific attributes — II

Download the model specification file

v422 binary SM specificHeadway.py (from the edX webpage)

and the corresponding output file

v422 binary SM specificHeadway.html (from the edX webpage)

1. The behavioral assumption is that the train headway actually influ-
ences the choice between car and train. We include the TRAIN HE vari-
able in the utility function of the train alternative and estimate the
corresponding coefficient B HE.

2. Yes. The negative estimate of the headway coefficient B HE indicates
that the higher the headway, i.e. the lower the frequency of service, the
lower the utility of train.

1



4 Socioeconomic characteristics — I

Download the model specification file

v422 binary SM specificHeadwaySocioec.py (from the edX webpage)

and the corresponding output file

v422 binary SM specificHeadwaySocioec.html (from the edX webpage)

1. This specification associates a different alternative specific constant
with different individuals in the sample, based on their socio-economic
characteristics. We assume that (i) the age and (ii) the ownership of
an annual season ticket for train have an influence on the choice. That
is, (i) older people may have a preference towards a specific mode, and
(ii) people with an annual season ticket for train have a preference to-
wards train. We test this assumption by including the variables SENIOR
and GA in the utility of the train alternative and estimating the corre-
sponding coefficient B SENIOR and B GA. Note that, the observations,
for which the variable AGE is unknown (coded as 6), are removed from
the estimation.

2. The positive sign of the age coefficient B SENIOR reflects a preference
of older individuals for the train alternative with respect to car.

3. The coefficient related to the ownership of a GA is positive, as expected.
It reflects a preference for the train alternative with respect to carfor
travelers possessing a season ticket.

5 Socioeconomic characteristics — II

Download the model specification file

v422 binary SM specificHeadwaySocioec2.py (from the edX webpage)

and the corresponding output file

v422 binary SM specificHeadwaySocioec2.html (from the edX webpage)

2



1. The model is unidentified. Note that Biogeme is able to estimate
the model. The fact that it is unidentified is detected in the results
by the huge standard errors associated with the coefficients B GA and
B SENIOR. Also, at the very end of the output file, the model is re-
ported to be unidentified, and Biogeme names the parameters causing
problem.

2. This happens because only differences in utility matters. That is, if a
constant is added to the utility of all alternatives, the alternative with
the highest utility remains the same. As the two variables SENIOR and
GA are individual specific, they do not change over the two alternatives
in the choice set. Their effect cancels out when included in both utilities
and therefore cannot be identified.

3



Biogeme: an open-source software for

estimating choice models – 4.2 Using Biogeme

Michel Bierlaire

Practice quiz: logit and probit

The objective of this exercise is to build and estimate a binary probit

model using Biogeme. You will continue working with the Swissmetro dataset
provided in the file swissmetro.dat (from the edX webpage). You shall
perform the following tasks:

1. Download the specification of the logit model: v423 binaryLogitSM.py

(from the edX webpage)

2. Prepare the file v423 binaryProbitSM.py file for a binary probit model
with the exact same specification of utility functions as the binary
logit model. To do so, copy the file v423 binaryLogitSM.py into
v423 binaryProbitSM.py and edit it. Hint: the Biogeme syntax for
calculating the normal CDF of x is

bioNormalCdf(x),

where x is any valid Biogeme formula.

3. Estimate the parameters of the binary logit model.

4. Estimate the parameters of the binary probit model.

5. Can you directly compare the estimates of the parameters that you ob-
tain from the binary probit model with the ones that you obtained from
the binary logit? If not, what do you need to take under consideration,
and how, when interpreting the model results?

1



Biogeme: an open-source software for

estimating choice models – 4.2 Using Biogeme

Michel Bierlaire

Solution to the practice quiz: logit and probit

• The model specification file for the binary probit model is

v423 binaryProbitSM.py (from the edX webpage).

• The estimation results for logit are available in the file

v423 binaryLogitSM.html (from the edX webpage).

• The estimation results for probit are available in the file

v423 binaryProbitSM.html (from the edX webpage).

The normalization of the variance of the error terms must be taken under
consideration when comparing the estimates obtained from the two models.
The coefficients of the logit model are π/

√
3 larger than those of the probit

model due to the difference in normalization. Therefore, the scale difference
must be taken into account to correctly interpret the sensitivity to the cost
and time attributes implied by the two models.

The parameter estimates of the two models are reported in Table 1, where
the last column contains the estimates of the logit model divided by π/

√
3.

These values can be compared with the estimates of the probit model. It is
important to note that the scaled logit estimates and the probit estimates
are not equal. They are simply comparable. The logit and the probit are
two different models, based on different assumptions.

Another possibility to compare the parameters from one model to the
next is to divide all the parameters by one of the parameters (typically, the
cost parameter, so that the results can be interpreted in monetary units.)
Note that, because of this ratio, the scales cancel out and the values can be
compared.

1



Logit Probit Logit / (π/
√
3)

1 Car cte. -1.24 -0.55 -0.684
2 Travel cost (car) -2.40 -0.985 -1.32
3 Travel time (car) -1.13 -0.651 -0.623
4 Headway -0.00581 -0.00332 -0.00320
5 Travel cost (train) -1.11 -0.543 -0.612
6 Travel time (train) -0.394 -0.195 -0.217

Table 1: Probit and logit: comparison of the estimates
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Choice with multiple alternatives
Derivation of the logit model

Michel Bierlaire

Introduction to choice models



The choice set

For all i ∈ Cn

Uin = Vin + εin

◮ What is Cn?

◮ What is εin?

◮ What is Vin?



Choice set

Universal choice set

◮ All potential alternatives for the
population

◮ Restricted to relevant
alternatives

Mode choice

◮ driving alone

◮ sharing a ride

◮ taxi

◮ motorcycle

◮ bicycle

◮ walking

◮ transit bus

◮ rail rapid transit



Choice set

Individual’s choice set

◮ No driver license

◮ No auto available

◮ Awareness of transit services

◮ Transit services unreachable

◮ Walking not an option for long
distance

Mode choice

◮ driving alone

◮ sharing a ride

◮ taxi

◮ motorcycle

◮ bicycle

◮ walking

◮ transit bus

◮ rail rapid transit



Choice set

Choice set generation is tricky

◮ How to model “awareness”?

◮ What does “long distance” exactly mean?

◮ What does “unreachable” exactly mean?

We assume here deterministic rules

◮ Car is available if n has a driver license and a car is available in the household

◮ Walking is available if trip length is shorter than 4km.



Availability conditions

δin =

{
1 if i ∈ Cn,
0 otherwise.

Choice model

Pn(i |Cn) = Pn(i |δn, C) = Pr(Uin + ln δin ≥ Ujn + ln δjn)



Choice with multiple alternatives
Derivation of the logit model

Michel Bierlaire

Introduction to choice models



The error term

For all i ∈ Cn

Uin = Vin + εin

◮ What is Cn?

◮ What is εin?

◮ What is Vin?



Error terms

Logit: same assumptions as for binary logit
εin are

◮ independent and

◮ identically distributed,

◮ extreme value EV(0,µ).

Comments

◮ Independence: across i and n.

◮ Identical distribution: same scale parameter µ across i and n.

◮ For estimation, scale is normalized: µ = 1.



Choice with multiple alternatives – 5.1

Derivation of the logit model

Michel Bierlaire

Mathematical derivation.

To derive the logit model, we consider the following ingredients:

• a choice set for each individual n: C
n
= {1, . . . , J

n
}, and

• a utility function for each individual and each alternative: U
in
= V

in
+

ε
in
.

We assume that the error terms ε
in

are

• independent, both across alternatives and individuals, and

• Extreme Value distributed, with the same parameters for each individ-
ual and each alternative:

ε
in
∼ EV(0, µ). (1)

These assumptions are summarized by the statement “i.i.d. Extreme Value”,
where “i.i.d.” stands for independent and identically distributed.

The choice model is

P (i|C
n
) = Pr(V

in
+ ε

in
≥ max

j=1,...,Jn
V
jn

+ ε
jn
). (2)

The idea of the derivation is to consider this model as a binary logit model, as
we have already derived its specification. In order to be chosen, alternative
i must have a utility larger than all other alternatives. Now, consider within
the set C

n
\ {i} composed of the other alternatives, the one associated with

1



the highest utility. We do not know which specific alternative achieves this,
but we know that its utility is

U∗

n
= max

j∈Cn\{i}

U
in
= max

j∈Cn\{i}

(V
jn

+ ε
jn
). (3)

Therefore, the choice model can be written:

P (i|C
n
) = Pr(U

in
≥ U∗

n
), (4)

that involves only two alternatives. In order to derive the choice model, we
need to know the distribution of U∗

n
. From a property of the extreme value

distribution (see property 6 in the appendix below), and the fact that all
error terms are i.i.d., we have that

U∗

n
∼ EV



 1

µ
ln

∑

j∈Cn\{i}

eµVjn , µ



 . (5)

Equivalently (see property 4 in the appendix), we can write

U∗

n
= V ∗

n
+ ε∗

n
(6)

where

V ∗

n
=

1

µ
ln

Jn∑

j=2

eµVjn (7)

and
ε∗
n
∼ EV(0, µ). (8)

Consequently, (4) is a binary logit model and

P (i|C
n
) =

eµVin

eµVin + eµV
∗

n

(9)

where

V ∗

n
=

1

µ
ln

∑

j∈Cn\{i}

eµVjn . (10)

We have
eµV

∗

n = eln
∑

j∈Cn\{i}
e
µVjn

=
∑

j∈Cn\{i}

eµVjn , (11)

2



and (9) can be written

P (i|C
n
) =

eµVin

eµV1n +
∑

j∈Cn\{i}
eµVjn

, (12)

to finally obtain
eµVin

∑
j∈Cn

eµVjn

. (13)

This is the logit model. Interestingly, it is a straightforward extension of
the binary logit model, where the sum at the denominator involves now all
alternatives in the choice set.

Properties of the extreme value distribution

The extreme value distribution with location parameter η and scale param-
eter µ has the following properties:

1. The mode is η.

2. The mean is η + γ

µ
, where

γ = −

∫ +∞

0

e−x ln xdx ≈ 0.5772 (14)

is Euler’s constant.

3. The variance is π
2

6µ2 .

4. If ε ∼ EV(η,µ) , then

aε+ b ∼ EV(aη + b,
µ

a
),

where a, b ∈ R, a > 0.

5. If ε
a
∼ EV(η

a
, µ) and ε

b
∼ EV(η

b
, µ) are independent with the same

scale parameter µ, then

ε = ε
a
− ε

b
∼ Logistic(η

a
− η

b
, µ),

3



namely

f
ε
(ξ) =

µe−µ(ξ−ηa+ηb)

(1 + e−µ(ξ−ηa+ηb))2
, (15)

F
ε
(ξ) =

1

1 + e−µ(ξ−ηa+ηb)
, µ > 0,−∞ < ξ < ∞. (16)

(17)

6. If ε
i
∼ EV(η

i
, µ), for i = 1, . . . , J , and ε

i
are independent with the

same scale parameter µ, then

ε = max
i=1,...,J

ε
i
∼ EV(η, µ) (18)

where

η =
1

µ
ln

J∑

i=1

eµηi . (19)

It is important to note that this property holds only if all ε
i
have the

same scale parameter µ. As ε follows an extreme value distribution, its
expected value is

E[ε] = η +
γ

µ
.

Equivalently,

η = E[ε]−
γ

µ
.

Therefore, (19) provides the expected value of the maximum, up to a
constant.

4



Choice with multiple alternatives – 5.1

Derivation of the logit model

Michel Bierlaire

Note on the scale parameter.

The logit model is

P (i|C
n
) =

eµVin

∑
j∈Cn

eµVjn

. (1)

The scale parameter µ is not identified from data. If

V
in
=

∑

k

β
k
x
ink

, (2)

the quantity involved in the logit model is

µV
in
=

∑

k

µβ
k
x
ink

. (3)

Only the products µβ
k
are identified. It is therefore common to normalize

the parameter µ to 1 and to estimate the coefficients β
k
.

The fact that the scale parameter is no identified does not mean that
it does not exist. This is particularly important to remember at the stage
where the model is applied in a specific context.

It is interesting to investigate the extreme cases for the scale parameters.
When the value of µ goes to zero, that is when the variance of the error

terms goes to infinity, the systematic parts of the utility V
in
do not play a role

anymore, and the model assigns the same probability to each alternative:

lim
µ→0

P (i|C
n
;µ) =

1

J
n

, ∀i ∈ C
n
. (4)

1



When the value of µ goes to infinity, that is when the variance of the
error terms goes to zero, the model becomes fully deterministic:

lim
µ→∞ P (i|C

n
;µ) = lim

µ→∞

1

1+
∑

j 6=i
e
µ(Vjn−Vin)

=

{
1 if V

in
> max

j 6=i
V
jn
,

0 if V
in
< max

j 6=i
V
jn
.

(5)

The above formula does not treat the case of ties. Ties do not matter in
a probabilistic context, as the probability that they occur is zero. As this
specific case is deterministic, ties matter. Suppose that the maximum utility
is achieved by J∗

n
alternatives, that is

V
in
= max

j∈Cn

V
jn
, i = 1, . . . , J∗

n
. (6)

In that case, each of them has the same probability to be chosen, that is

lim
µ→∞

P (i|C
n
;µ) =

1

J∗

n

, i = 1, . . . , J∗

n
, (7)

and
lim
µ→∞

P (i|C
n
;µ) = 0, i = J∗

n
+ 1, . . . , J

n
. (8)

2



Choice with multiple alternatives
Specification of the deterministic part

Michel Bierlaire

Introduction to choice models



Systematic part of the utility function

For all i ∈ Cn

Uin = Vin + εin

◮ What is Cn?

◮ What is εin?

◮ What is Vin?



Systematic part of the utility function

Vin = V (zin, Sn)

◮ zin is a vector of attributes of alternative i for individual n

◮ Sn is a vector of socio-economic characteristics of n



Functional form: linear utility

Notation

xin = (zin, Sn)

Linear-in-parameters utility functions

Vin = V (zin, Sn) = V (xin) =
∑

k

βk(xin)k

Not as restrictive as it may seem



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Practice quiz: model

Consider the following model specification.

Uwalk,n = ASCwalk + βdistance · distancen + ε
walk,n

(1)

Ubicycle,n = ASCbicycle + βdistance · distancen + ε
bicycle,n

(2)

Ucar,n = ASCcar + βtime · timecar,n + βcost · costcar,n + ε
car,n

(3)

Ubus,n = βtime · timebus,n + βcost · costbus,n + ε
bus,n

(4)

The values of the parameters are shown in Table 1.

Parameter value
ASCwalk -2.42
ASCbicycle -3.62
ASCcar -4.55
βdistance -4.53
βtime -2.76
βcost 0.25

Table 1: Estimation results

1



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Solution to the practice quiz: model

1 Model specification

1. C = {walk, bicycle, car, bus}

2. |Cn| = 4− 1 = 3

3. Deterministic part of the utility functions:

• Vwalk,n = ASCwalk + βdistance · distancen

• Vbicycle,n = ASCbicycle + βdistance · distancen

• Vcar,n = ASCcar + βtime · timecar,n + βcost · costcar,n

• Vbus,n = βtime · timebus,n + βcost · costbus,n

4. As no assumption about the distribution of the error terms has been
specified, there is not enough information to know the type of model.

� logit,

� probit,

� I don’t know.

2 Model parameters

1. As the coefficient of travel is negative, the higher the travel time of an
alternative, the lower its utility.

1



� true,

� false.

2. As the coefficient of travel cost is positive, the higher the travel cost of
an alternative, the higher its utility.

� true,

� false.

3. As the coefficient of distance is negative, the higher the travel distance
of an alternative, the lower its utility.

� true,

� false.

4. We would expect the three variables (travel time, travel cost and dis-
tance) to be associated with negative coefficients. The positive cost
coefficient implies that an increase of the cost of an alternative would
increase its attractivity. It is not consistent with our expectations.

2



Choice with multiple alternatives
Specification of the deterministic part

Michel Bierlaire

Introduction to choice models



Quantitative explanatory variables



Quantitative attributes
Numerical and continuous

◮ (zin)k ∈ R, ∀i , n, k

◮ Associated with a specific unit

◮ Vary across both i and n.

Examples

◮ Auto in-vehicle time (in min.)

◮ Transit in-vehicle time (in min.)

◮ Auto out-of-pocket cost (in cents)

◮ Transit fare (in cents)

◮ Walking time to the bus stop (in min.)

Straightforward modeling



Quantitative attributes
◮ Vin is unitless

◮ Therefore, β depends on the unit of the associated attribute

◮ Example: consider two specifications

Vin = β1TTin + · · ·
Vin = β′

1
TT′

in + · · ·

◮ If TTin is a number of minutes, the unit of β1 is 1/min

◮ If TT′

in is a number of hours, the unit of β′

1
is 1/hour

◮ Both models are equivalent, but the estimated value of the coefficient will
be different

β1TTin = β′

1
TT′

in =⇒
TTin

TT′

in

=
β′

1

β1

= 60



Quantitative attributes

Generic vs alternative specific

Vin = β1TTin + · · ·
Vjn = β1TTjn + · · ·

or

Vin = β1TTin + · · ·
Vjn = β2TTjn + · · ·

Modeling assumption: a minute has/has not the same marginal utility whether it
is incurred on the auto or bus mode



Quantitative socio-eco. characteristics

Numerical and continuous

◮ (Sn)k ∈ R, ∀n, k

◮ Associated with a specific unit

◮ Vary only across n, not across i .

Examples

◮ Annual income (in KCHF)

◮ Age (in years)



Modeling heterogeneity

Behavioral assumption

◮ Individuals have different taste parameters.

◮ The difference is explained by one socio-economic characteristic.

Vin = β1nzin + · · ·

where
β1n = β1n(incomen).



Modeling heterogeneity

Interaction
Typical definition of β1n:

β1n = β1incomen

Vin = β1nzin + · · · = β1incomenzin + · · · = β1xin + · · ·

where
xin = incomenzin



Modeling heterogeneity

Behavioral assumption

◮ Individuals have different taste parameters.

◮ The difference is explained by several socio-economic characteristics.

Vin = β1nzin + · · ·

where
β1n = β1n(incomen, agen).



Modeling heterogeneity

Interaction
Typical definition of β1n:

β1n = β1incomenagen

Vin = β1nzin + · · · = β1incomenagenzin + · · · = β1xin + · · ·

where
xin = incomenagenzin



Modeling heterogeneity

Creativity and relevance

◮ Several functional forms can be investigated.

◮ For instance, if zin is the cost variables, we write

βcn = βc/incomen

◮ Indeed, in this case, the new variable can be interpreted as the share of the
income dedicated to this purchase:

xin = zin/incomen



Modeling heterogeneity: alternative specific constants
ASCs can also vary across individuals

Base model

V1n = βxx1n1 + β1 + · · ·
V2n = βxx2n1 + β2 + · · ·
V3n = βxx3n1 + · · ·

Heterogeneous specification

V1n = βxx1n1 + β1n + · · ·
V2n = βxx2n1 + β2n + · · ·
V3n = βxx3n1 + · · ·

where
βin = βi incomen



Modeling heterogeneity: alternative specific constants

Heterogeneous specification

V1n = βxx1n1 + β1n + · · ·
V2n = βxx2n1 + β2n + · · ·
V3n = βxx3n1 + · · ·

where
βin = βi incomen

V1n = βxx1n1 + β1incomen + · · ·
V2n = βxx2n1 + β2incomen + · · ·
V3n = βxx3n1 + · · ·



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Practice quiz: parameters

Consider a mode choice model with three alternatives: (i) bicycle, (ii)
walk and (iii) metro. The specification includes alternative specific constants
(ASCs) and a coefficient associated with the effect of travel time (βtime):

Vbicycle,n = ASCbicycle +βtime · travel timebicycle,n,
Vwalk,n = ASCwalk +βtime · travel timewalk,n,
Vmetro,n = ASCmetro +βtime · travel timemetro,n.

The travel time attribute in the dataset is expressed in minutes. The
alternative specific constant of the bicycle alternative has been normalized
to zero, and the value of the other parameters estimated from data. The
estimates are:

• ASCwalk: -0.01,

• ASCmetro: 0.2,

• βtime: -0.05.

1



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Solution to the practice quiz: parameters

1. In order to obtain an equivalent model where ASCwalk is zero, each
constant must be increased by 0.01. The coefficient βtime is not affected.

• ASCbicycle: 0.01,

• ASCwalk: 0,

• ASCmetro: 0.21

• βtime: -0.05.

2. The coefficient of travel time must be multiplied by 60.

• ASCbicycle: 0,

• ASCwalk: -0.01,

• ASCmetro: 0.2,

• βtime: -3.

For instance, for a trip of one hour, the contribution of travel time to
the utility is -3 for both models.

3. The socio-economic characteristic is interacted with the alternative spe-
cific constant, but is not normalized in this model. Increasing all βman,i

parameters by the same quantity does not change the choice probabil-
ity and, therefore, the log likelihood. Consequently, there is an infinite
number of maxima of the log likelihood function, and the second deriva-
tive matrix is singular at the solution. A proper specification would be

1



Vbicycle,n = ASCbicycle +βtime · travel timebicycle,n
Vwalk,n = ASCwalk +βtime · travel timewalk,n +βman,walk ·mann,

Vmetro,n = ASCmetro +βtime · travel timemetro,n +βman,metro ·mann.

2



Choice with multiple alternatives
Specification of the deterministic part

Michel Bierlaire

Introduction to choice models



Qualitative explanatory variables



Qualitative attributes

Examples

◮ Level of comfort for the train

◮ Reliability of the bus

◮ Color

◮ Shape

◮ etc...



Modeling

Identify all possible levels of the variable

◮ Very comfortable,

◮ Comfortable,

◮ Rather comfortable,

◮ Not comfortable.

Select a base level

◮ Very comfortable,

◮ Comfortable,

◮ Rather comfortable,

◮ Not comfortable.



Modeling

Introduce a 0/1 attribute for
all levels except the base case

◮ zc for comfortable

◮ zrc for rather comfortable

◮ znc for not comfortable

zc zrc znc

very comfortable 0 0 0
comfortable 1 0 0

rather comfortable 0 1 0
not comfortable 0 0 1

If a qualitative attribute has K levels, we introduce K − 1
binary variables (0/1) in the model



Modeling

Utility function

Vin = βczc + βrczrc + βncznc + · · ·

Note
The choice of the base level is arbitrary.



Qualitative characteristics

Examples

◮ Sex

◮ Education

◮ Professional status

◮ etc.



Modeling heterogeneity

Behavioral assumption

◮ Individuals have different taste parameters.

◮ The difference is explained by a qualitative socio-economic characteristic.

Vin = β1nzin + · · ·

where
β1n = β1n(educationn).



Modeling heterogeneity

Segmentation

◮ Assume that there are K levels for the qualitative variable (e.g. education).

◮ They characterize K segments in the population.

◮ Define

δkn =

{
1 if individual n is associated with level k
0 otherwise

◮ Introduce a parameter βk
1
for each level and define

β1n =
K∑

k=1

βk
1
δkn



Modeling heterogeneity

Segmentation

Vin = β1nzin + · · · =
K∑

k=1

βk
1
δknzin + · · · =

K∑

k=1

βk
1
xink + · · ·

where
xink = δknzin



Segmentation with several variables

Example

◮ Gender (M,F)

◮ House location (metro, suburb, perimeter areas)

◮ 6 segments: (M ,m), (M , s), (M , p), (F ,m), (F , s), (F , p).



Segmentation

Specification

βM,mTTM,m + βM,sTTM,s + βM,pTTM,p+
βF ,mTTF ,m + βF ,sTTF ,s + βF ,pTTF ,p+

TTi = TT if indiv. belongs to segment i , and 0 otherwise

Remarks

◮ For a given individual, exactly one of these terms is non zero.

◮ The number of segments grows exponentially with the number of variables.



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Practice quiz: qualitative variables

Consider a mode choice model between car and metro. The specification
includes an alternative specific constant for metro, the travel time for each
alternative, and the level of comfort for metro. The level of comfort is a
discrete variable that can take four values: very comfortable, comfortable,
rather comfortable and not comfortable. Using the level very comfortable as
the base case, it is included in the utility function through three dummy
variables zc,n, zrc,n and znc,n defined as follows:

Level of comfort for n zc,n zrc,n znc,n
very comfortable 0 0 0

comfortable 1 0 0
rather comfortable 0 1 0

not comfortable 0 0 1

The model specification is

Vcar,n = βtime · Travel timecar,n
Vmetro,n = ASCmetro+ βtime · Travel timecar,n + βc · zc,n + βrc · zrc,n + βnc · znc,n.

The estimates of the parameters are

• ASCmetro: 0.55,

• βtime: −0.231,

• βc: −0.90,

• βrc: −1.00,

1



• βnc: −2.00.

Consider now the exact same model, where the level comfortable is con-
sidered as the base case for the comfort variable.

1. Define the dummy variables and their coding.

2. Write the model specification.

3. Provide the estimates of the parameters.

2



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Solution to the practice quiz: qualitative variables

1. We use three dummy variables zvc,n, zrc,n and znc,n defined as follows:

Level of comfort for n zvc,n zrc,n znc,n
very comfortable 1 0 0

comfortable 0 0 0
rather comfortable 0 1 0

not comfortable 0 0 1

2. The model specification is

Vcar,n = βtime · Travel timecar,n
Vmetro,n = ASCmetro+ βtime · Travel timecar,n + βvc · zvc,n + βrc · zrc,n + βnc · znc,n.

3. The estimates of the parameters are

• ASCmetro: 0.55,

• βtime: −0.231,

• βvc: 0.90,

• βrc: −0.10,

• βnc: −1.10.

Only the coefficients of the dummy variables have changed. Considering
that βvc has been normalized to zero in the first model, and βc in the
second, their value has increased by 0.90, so that the coefficient for the
level “comfortable” becomes 0.

1
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Nonlinear specifications: data preprocessing



Behavioral motivation

Example with travel time

◮ Compare a trip of 5 min with a trip of 10 min

◮ Compare a trip of 120 min with a trip of 125 min

◮ Utility difference: βT× 5 min, in both cases.

Behavioral assumption
One more minute of travel is not perceived the same way for short trips as for
long trips



Behavioral motivation
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Nonlinear transformations of the variables

Assumption 1: the marginal impact of travel time is constant

Vin = βT timein + · · ·

Assumption 2: the marginal impact of travel time decreases with
travel time

Vin = βT ln(timein) + · · ·

Remarks

◮ It is still a linear-in-parameters form

◮ The unit, the value, and the interpretation of βT are different



Nonlinear transformations of the variables

Data can be preprocessed to account for nonlinearities

Vin = V (h(zin, Sn)) =
∑

k

βk(h(zin, Sn))k

It is linear-in-parameter, even with h nonlinear.

Note
Interactions between attributes and socio-economic characteristics are a special
case of h



Choice with multiple alternatives
Specification of the deterministic part

Michel Bierlaire

Introduction to choice models



Nonlinear specifications: piecewise linear specification



Piecewise linear specification

Again: sensitivity to travel time varies with travel time

◮ Log transform is not the only specification

◮ Another possibility: split the range of values of the variable
◮ Short trips: 0–90 min.
◮ Medium strips: 90–180 min.
◮ Long trips: 180–270 min.
◮ Very long trips: 270 min. and more

◮ Each category is associated with a different coefficient.



Piecewise linear specification
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Piecewise linear specification

Procedure

◮ Select breakpoints γ1 < γ2 < . . . < γL

◮ Define new variables



Piecewise linear specification

xin



Piecewise linear specification

xinγ1 γ2 · · · γL



Piecewise linear specification

xinγ1 γ2 · · · γL

xin20 γ2 − γ1



Piecewise linear specification

Formulation

xin1 =

{
xin if xin < γ1
γ1 otherwise

xinℓ =






0 if xin < γ
ℓ−1

xin − γ
ℓ−1 if γ

ℓ−1 ≤ xin < γ
ℓ

γ
ℓ
− γ

ℓ−1 otherwise

xinL =

{
0 if xin < γL
xin − γL otherwise

xinγ1 γ2 · · · γL

xin20 γ2 − γ1



Piecewise linear specification

Equivalent formulations

xin1 =

{
xin if xin < γ1
γ1 otherwise

xin1 = min(xin, γ1)

xinℓ =






0 if xin < γ
ℓ−1

xin − γ
ℓ−1 if γ

ℓ−1 ≤ xin < γ
ℓ

γ
ℓ
− γ

ℓ−1 otherwise
xinℓ = max(0,min(xin − γ

ℓ−1, γℓ − γ
ℓ−1))

xinL =

{
0 if xin < γL
xin − γL otherwise

xinL = max(0, xin − γL)



Piecewise linear specification

Examples
γ1 = 90, γ2 = 180, γ3 = 270.

xin 50 100 200 300
xin1 50 90 90 90
xin2 0 10 90 90
xin3 0 0 20 90
xin4 0 0 0 30

γ1 = 1, γ2 = 5, γ3 = 10.

xin 0.5 4 8 12
xin1 0.5 1 1 1
xin2 0 3 4 4
xin3 0 0 3 5
xin4 0 0 0 2

Utility function

Vin =
L∑

ℓ=1

β
ℓ
xinℓ



Box-Cox transforms

Box and Cox (1964)

Vin = βxin(λ) + · · ·

where

xin(λ) =






x
λ

in
− 1

λ
if λ 6= 0

ln xin if λ = 0.

and xin > 0.



Box-Cox transforms
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λ < 1 (concave)

λ = 1 (linear)
λ > 1 (convex)
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Nonlinear specifications: heterogeneity



Heterogeneity

Interaction

Vin = βinzin + · · ·

Linear interaction

βin = β incomen

Nonlinear interaction

βin = β incomeλ
n
, where λ =

∂βin

∂incomen

incomen
βin



Nonlinear interactions

Remarks

◮ λ must be estimated

◮ Utility is not linear-in-parameters anymore

◮ Use a reference value for the socio-economic characteristic:

βin = β

(
incomen
refIncome

)
λ

◮ Reference value is arbitrary

◮ Several (continuous) characteristics can be combined:

βin = β

(
incomen
refIncome

)
λ1

(
age

n

refAge

)
λ2
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Nonlinear specifications: heteroscedasticity



Heteroscedasticity

Logit is homoscedastic

◮ εin i.i.d. across both i and n.

◮ In particular, they all have the same variance.

Motivation

◮ People may have different level of knowledge (e.g. taxi drivers)

◮ Different sources of data



Heteroscedasticity

Data

◮ G groups in the population.

◮ Each individual n belongs to exactly one group g .

◮ Characterized by indicators:

δng =

{
1 if n belongs to g,
0 otherwise

and
∑

g
δng = 1, for all n.



Heteroscedasticity

Assumption: variance of error terms is different across groups
Consider individual n1 belonging to group 1, and individual n2 belonging to group
2.

Uin1
= Vin1

+ εin1
Uin2

= Vin2
+ εin2

and Var(εin1) 6= Var(εin2)

Modeling
Without loss of generality:

Var(εin1) = α2

2
Var(εin2)



Heteroscedasticity

Modeling: scale parameters

Uin1
= Vin1

+ εin1 = Vin1
+ ε′

in1

α2Uin2
= α2Vin2

+ α2εin2 = α2Vin2
+ ε′

in2

Variance

Var(ε′
in2
) = Var(α2εin2)
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Heteroscedasticity
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Heteroscedasticity

Modeling: scale parameters

Uin1
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Heteroscedasticity

Modeling: scale parameters

Uin1
= Vin1

+ εin1 = Vin1
+ ε′

in1

α2Uin2
= α2Vin2

+ α2εin2 = α2Vin2
+ ε′

in2

Variance

Var(ε′
in2
) = Var(α2εin2)

= α2

2
Var(α2εin2)

= Var(εin1)
= Var(ε′

in1
)

ε′
in1

and ε′
in2

can be assumed i.i.d.



Heteroscedasticity

Modeling: utility function

µnVin + εin

where

µn =
G∑

g=1

δngαg

and αg , g = 1, . . . ,G are unknown parameters to be estimated from data.

Remarks

◮ Even if Vin =
∑

j
βjxjin is linear-in-parameters, µnVin =

∑
j
µnβjxjin is not.

◮ Normalization: one αg must be normalized.



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Practice quiz

Consider two variables involved in a choice model:

• cin, the price of alternative i for individual n, and,

• In, the monthly income of individual n.

You are asked to propose various specifications for the deterministic part of
the utility function of alternative i and decision-maker n including the price
variable. It is important that the utility function is always continuous in cin

and In.

1. The impact of the price on the utility function is proportional to its
value.

2. The marginal effect of price on the utility function varies with price.

3. The impact of the price on the utility function is proportional, but the
factor of proportionality is different for prices below and above 25 CHF.

4. The impact of price on the utility function varies nonlinearly with in-
come.

1



Choice with multiple alternatives – 5.2

Specification of the deterministic part

Michel Bierlaire

Solution to the practice quiz

1. It is the classical linear specification:

V
in
= · · ·+ β

c
c
in
+ · · · .

2. The derivative of the utility function with respect to price should de-
pend on price. Any nonlinear specification would do. A typical speci-
fication involves the log:

V
in
= · · ·+ β

c
log(c

in
) + · · · .

3. It is a piecewise linear specification:

V
in
= · · ·+ β

<25cin,1 + β≥25cin,2 + · · · ,

where

c
in,1 =






c
in

if c
in
< 25

25 otherwise

and

c
in,2 =






0 if c
in
< 25

c
in
− 25 otherwise

4. The beta coefficient must depend nonlinearly on income. Classical
specifications include:

V
in
= · · · β

c
log(I

n
)c

in
· · · ,

1



and

V
in
= · · · β

c
(
I
n

I
ref

n

)λc
in
· · · .
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Nonlinear specifications: Box-Cox transforms



Box-Cox transforms

Box and Cox (1964)

Vin = βxin(λ) + · · ·

where

xin(λ) =






x
λ

in
− 1

λ
if λ 6= 0

ln xin if λ = 0.

and xin > 0.



Box-Cox transforms
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Box-Cox transforms

The Box-Cox transform of a positive variable x, introduced by Box and
Cox (1964), is defined as

x(λ) =






xλ − 1

λ
if λ 6= 0

log x if λ = 0.

(1)

Note that

lim
λ→0

xλ − 1

λ
= log x, (2)

so that x(λ) is continuous [Verify]. It can be embedded in the specification
of a utility function:

V
in
= β

k
x
ink

(λ) + · · · , (3)

where both β
k
and λ are estimated from data. Such a specification is not

linear-in-parameters. Its flexibility allows to let the data tell if the variable
is involved in a linear way (λ = 1), a logarithmic way (λ = 0) or as a power
law.

If the variable x may take negative values, Box and Cox (1964) propose
to shift it before the transform is applied:

x(λ, α) =






(x+ α)λ − 1

λ
if λ 6= 0

log(x+ α) if λ = 0,

(4)

where α > −x.

1



There are other ways to impose the positivity of the argument of the
transform. For instance, Manly (1976) suggests to use an exponential:

x(λ) =

{
e
xλ

−1

λ
if λ 6= 0

x if λ = 0,
(5)

while John and Draper (1980) propose to use the absolute value:

x(λ) =

{
sign(x) (|x|+1)

λ
−1

λ
if λ 6= 0

sign(x) log(|x|+ 1) if λ = 0.
(6)

A more complex transform has been proposed by Yeo and Johnson (2000):

x(λ) =






(x+ 1)λ − 1

λ
if λ 6= 0, x ≥ 0;

log(x+ 1) if λ = 0, x ≥ 0;

(1− x)2−λ − 1

λ− 2
if λ 6= 2, x < 0;

− log(1− x) if λ = 2, x < 0.

(7)

Plenty of references are available in the literature. We refer the reader to
Sakia (1992) for a review, and to Zarembka (1990) for a discussion in terms
of model specification.
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Choice with multiple alternatives – 5.3 An

example: mode choice in Switzerland

Michel Bierlaire

Descriptionof the data.

This example deals with the estimation of a mode choice behavior model
for inhabitants in Switzerland using revealed preference data. The survey
was conducted between 2009 and 2010 for CarPostal, the public transport
branch of the Swiss Postal Service. The main purpose of this survey is
to collect data for analyzing the travel behavior of people in low-density
areas, where CarPostal typically serves. A following study proposes new
public transport alternatives according to the respondents’ willingness to pay
for these potential services in order to increase the market share of public
transport.

Data collection

The survey covers French and German speaking areas of Switzerland. Ques-
tionnaires were sent to people living in rural area by mail. The respondents
were asked to register all the trips performed during a specified day. The
collected information consists of origin, destination, cost, travel time, chosen
mode and activity at the destination. Moreover, we collected socio-economic
information about the respondents and their households.

1124 completed surveys were collected. For each respondent, cyclic se-
quences of trips (starting and ending at the same location) are detected and
their main transport mode is identified. The resulting data base includes 1906
sequences of trips linked with psychometric indicators and socio-economic at-
tributes of the respondents. It should be noticed that each observation is a
sequence of trips that starts and ends at home. A respondent may have
several sequences of trips in a day.

1



Variables and descriptive statistics

The variables are described in Tables 1, 2, 3, 4 and 5. The attitudinal
statements are written in Tables 6 and 7. A summary of descriptive statistics
for the main variables is given in Table 8.

Given the presence of missing data (coded as -1) an additional table sum-
marizing the three main affected variables (TripPurpose, ReportedDuration,
age) after removing the missing cases is presented (see Table 9).

We refer the reader to Atasoy et al. (2013) for an analysis based on this
data set.

References

Atasoy, B., Glerum, A. and Bierlaire, M. (2013). Attitudes towards mode
choice in switzerland, disP - The Planning Review 49(2): 101–117.
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Table 1: Description of variables
Name Description

ID Identifier of the respondent who described the trips in the
loop.

NbTransf The total number of transfers performed for all trips of the
loop, using public transport (ranging from 1-9).

TimePT The duration of the loop performed in public transport (in
minutes).

WalkingTimePT The total walking time in a loop performed in public trans-
ports (in minutes).

WaitingTimePT The total waiting time in a loop performed in public trans-
ports (in minutes).

TimeCar The total duration of a loop made using the car (in min-
utes).

CostPT Cost for public transports (full cost to perform the loop).
MarginalCostPT The total cost of a loop performed in public transports,

taking into account the ownership of a seasonal ticket by
the respondent. If the respondent has a “GA” (full Swiss
season ticket), a seasonal ticket for the line or the area, this
variable takes value zero. If the respondent has a half-fare
travel card, this variable corresponds to half the cost of the
trip by public transport..

CostCarCHF The total gas cost of a loop performed with the car in CHF.
CostCar The total gas cost of a loop performed with the car in euros.
TripPurpose The main purpose of the loop: 1 =Work-related trips; 2

=Work- and leisure-related trips; 3 =Leisure related trips.
-1 represents missing values

TypeCommune The commune type, based on the Swiss Federal Statisti-
cal Office 1 =Centers; 2 =Suburban communes; 3 =High-
income communes; 4 =Peri-urban communes; 5 =Touristic
communes; 6 =Industrial and tertiary communes; 7 =Ru-
ral and commuting communes; 8 =Agricultural and mixed
communes; 9 =Agricultural communes

UrbRur Binary variable, where: 1 =Rural; 2 =Urban.
ClassifCodeLine Classification of the type of bus lines of the commune: 1

=Center; 2 =Centripetal; 3 =Peripheral; 4 =Rabattement.
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Table 2: Description of variables
Name Description

frequency Categorical variable for the frequency: 1 =Low frequency,
< 12 pairs of trips per day; 2 =Low-middle frequency, 13 -
20 pairs of trips per day; 3 =Middle-high frequency, 21-30
pairs of trips per day; 4 =High frequency, > 30 pairs of
trips per day.

NbTrajects Number of trips in the loop
Region OR Coderegion-
CAR

Region where the commune of the respondent is situated.
These regions are denoted by CarPostal as follows: 1
=Vaud; 2 =Valais; 3 =Delemont; 4 =Bern; 5 =Basel,
Aargau, Olten; 6 =Zurich; 7 =Eastern Switzerland; 8
=Graubunden.

distance km Total distance performed for the loop.
Choice Choice variable: 0 = public transports (train, bus, tram,

etc.); 1 = private modes (car, motorbike, etc.); 2 = soft
modes (bike, walk, etc.).

InVehicleTime Time spent in (on-board) the transport modes only (dis-
carding walking time and waiting time), -1 if missing value.

ReportedDuration Time spent for the whole loop, as reported by the respon-
dent. -1 represents missing values

LangCode Language of the commune where the survey was conducted:
1 =French; 2 =German.

age Age of the respondent (in years) -1 represents missing val-
ues.

DestAct The main activity at destination: 1 is work, 2 is professional
trip, 3 is studying, 4 is shopping, 5 is activity at home,
6 is eating/drinking, 7 is personal business, 8 is driving
someone, 9 is cultural activity or sport, 10 is going out
(with friends, restaurant, cinema, theater), 11 is other and
-1 is missing value.

FreqTripHouseh Frequency of trips related to the household (drive someone,
like kids, or shopping), 1 is never, 2 is several times a day,
3 is several times a week, 4 is occasionally, -1 is for miss-
ing data and -2 if respondent didn’t answer to any opinion
questions.
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Table 3: Description of variables
Name Description

ModeToSchool Most often mode used by the respondent to go to school
as a kid (> 10), 1 is car (passenger), 2 is train, 3 is public
transport, 4 is walking, 5 is biking, 6 is motorbike, 7 is
other, 8 is multiple modes, -1 is for missing data and -2 if
respondent didn’t answer to any opinion questions.

ResidChild Main place of residence as a kid (< 18), 1 is city center
(large town), 2 is city center (small town), 3 is suburbs, 4 is
suburban town, 5 is country side (village), 6 is countryside
(isolated), -1 is for missing data and -2 if respondent didn’t
answer to any opinion questions.

FreqCarPar Frequency of the usage of car by the respondent’s parents
(or adults in charge) during childhood (< 18), 1 is never, 2
is occasionally, 3 is regularly, 4 is exclusively, -1 is for miss-
ing data and -2 if respondent didn’t answer to any opinion
questions.

FreqTrainPar Frequency of the usage of train by the respondent’s parents
(or adults in charge) during childhood (< 18), 1 is never, 2
is occasionally, 3 is regularly, 4 is exclusively, -1 is for miss-
ing data and -2 if respondent didn’t answer to any opinion
questions.

FreqOthPar Frequency of the usage of tram, bus and other public trans-
port (not train) by the respondent’s parents (or adults in
charge) during childhood (< 18), 1 is never, 2 is occasion-
ally, 3 is regularly, 4 is exclusively , -1 is for missing data
and -2 if respondent didn’t answer to any opinion questions.

NbHousehold Number of persons in the household. -1 for missing value.
NbChild Number of kids (< 15) in the household. -1 for missing

value.
NbCar Number of cars in the household.-1 for missing value.
NbMoto Number of motorbikes in the household. -1 for missing

value.
NbBicy Number of bikes in the household. -1 for missing value.
NbBicyChild Number of bikes for kids in the household. -1 for missing

value.
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Table 4: Description of variables
Name Description

NbComp Number of computers in the household. -1 for missing
value.

NbTV Number of TVs in the household. -1 for missing value.
Internet Internet connection, 1 is yes, 2 is no. -1 for missing value.
NewsPaperSubs Newspaper subscription, 1 is yes, 2 is no. -1 for missing

value.
NbCellPhones Number of cell phones in the household (total). -1 for miss-

ing value.
NbSmartPhone Number of smartphones in the household (total). -1 for

missing value.
HouseType House type, 1 is individual house (or terraced house), 2 is

apartment (and other types of multi-family residential), 3
is independent room (subletting). -1 for missing value.

OwnHouse Do you own the place where you are living? 1 is yes, 2 is
no. -1 for missing value.

NbRoomsHouse Number of rooms is your house. -1 for missing value.
YearsInHouse Number of years spent in the current house. -1 for missing

value.
Income Net monthly income of the household in CHF. 1 is less than

2500, 2 is from 2501 to 4000, 3 is from 4001 to 6000, 4 is
from 6001 to 8000, 5 is from 8001 to 10’000 and 6 is more
than 10’001. -1 for missing value.

Gender Gender of the respondent, 1 is man, 2 is woman. -1 for
missing value.

BirthYear Year of birth of the respondent. -1 for missing value.
Mothertongue Mothertongue. 1 for German or Swiss German, 2 for

French, 3 for other, -1 for missing value.
FamilSitu Familiar situation: 1 is single, 2 is in a couple without

children, 3 is in a couple with children, 4 is single with your
own children, 5 is in a co-location, 6 is with your parents
and 7 is for other situations. -1 for missing values.

OccupStat What is you occupational status? 1 is for full-time paid
professional activity, 2 for partial-time paid professional ac-
tivity, 3 for searching a job, 4 for occasional employment,
5 for no paid job, 6 for homemaker, 7 for invalidity leave, 8
for student and 9 for retired. -1 for missing values.

SocioProfCat To which of the following socio-professional categories do
you belong? 1 is for top managers, 2 for intellectual pro-
fessions, 3 for freelancers, 4 for intermediate professions, 5
for artisans and salespersons, 6 for employees, 7 for workers
and 8 for others. -1 for missing values.
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Table 5: Description of variables
Name Description

Education Highest education achieved. As mentioned by Wikipedia
in English: ”The education system in Switzerland is very
diverse, because the constitution of Switzerland delegates
the authority for the school system mainly to the cantons.
The Swiss constitution sets the foundations, namely that
primary school is obligatory for every child and is free in
public schools and that the confederation can run or sup-
port universities.” (source: Wikipedia, accessed April 16,
2013). It is thus difficult to translate the survey that was
originally in French and German. The possible answers in
the survey are: 1. Unfinished compulsory education: edu-
cation is compulsory in Switzerland but pupils may finish
it at the legal age without succeeding the final exam. 2.
Compulsory education with diploma 3. Vocational edu-
cation: a three or four-year period of training both in a
company and following theoretical courses. Ends with a
diploma called ”Certificat fédéral de capacité” (i.e., ”pro-
fessional baccalaureate”). 4. A 3-year generalist school giv-
ing access to teaching school, nursing schools, social work
school, universities of applied sciences or vocational educa-
tion (sometime in less than the normal number of years). It
does not give access to universities in Switzerland 5. High
school: ends with the general baccalaureate exam. The
general baccalaureate gives access automatically to univer-
sities. 6. Universities of applied sciences, teaching schools,
nursing schools, social work schools: ends with a Bache-
lor and sometimes a Master, mostly focus on vocational
training 7. Universities and institutes of technology: ends
with an academic Bachelor and in most cases an academic
Master 8. PhD thesis

HalfFareST Is equal to 1 if the respondent has a half-fare travel card
and to 2 if not.

LineRelST Is equal to 1 if the respondent has a line-related season
ticket and 2 if not.

GenAbST Is equal to 1 if the respondent has a GA (full Swiss season
ticket) and 2 if not.

AreaRelST Is equal to 1 if the respondent has an area-related season
ticket and 2 if not.

OtherST Is equal to 1 if the respondent has a season ticket that was
is not in the list and 2 if not.

CarAvail Represents the availability of a car for the respondent: 1 is
always, 2 is sometime, 3 is never. -1 for missing value.
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Table 6: Attitude questions. Coding: 1= strongly disagree, 2=disagree,
3=neutral, 4= agree, 5= strongly agree, 6=not applicable, -1= missing value,
-2= all answers to attitude questions missing
Name Description

Envir01 Fuel price should be increased to reduce congestion and air
pollution.

Envir02 More public transportation is needed, even if taxes are set
to pay the additional costs.

Envir03 Ecology disadvantages minorities and small businesses.
Envir04 People and employment are more important than the envi-

ronment.
Envir05 I am concerned about global warming.
Envir06 Actions and decision making are needed to limit greenhouse

gas emissions.
Mobil01 My trip is a useful transition between home and work.
Mobil02 The trip I must do interferes with other things I would like

to do.
Mobil03 I use the time of my trip in a productive way.
Mobil04 Being stuck in traffic bores me.
Mobil05 I reconsider frequently my mode choice.
Mobil06 I use my current mean of transport mode because I have

no alternative.
Mobil07 In general, for my activities, I always have a usual mean of

transport.
Mobil08 I do not feel comfortable when I travel close to people I do

not know.
Mobil09 Taking the bus helps making the city more comfortable and

welcoming.
Mobil10 It is difficult to take the public transport when I travel with

my children.
Mobil11 It is difficult to take the public transport when I carry bags

or luggage.
Mobil12 It is very important to have a beautiful car.
Mobil13 With my car I can go wherever and whenever.
Mobil14 When I take the car I know I will be on time.
Mobil15 I do not like looking for a parking place.
Mobil16 I do not like changing the mean of transport when I am

traveling.
Mobil17 If I use public transportation I have to cancel certain ac-

tivities I would have done if I had taken the car.
Mobil18 CarPostal bus schedules are sometimes difficult to under-

stand.
Mobil19 I know very well which bus/train I have to take to go where

I want to.
Mobil20 I know by heart the schedules of the public transports I

regularly use.8



Table 7: Attitude questions. Coding: 1= strongly disagree, 2=disagree,
3=neutral, 4= agree, 5= strongly agree, 6=not applicable, -1= missing value,
-2= all answers to attitude questions missing.
Name Description

Mobil21 I can rely on my family to drive me if needed
Mobil22 When I am in a town I don’t know I feel strongly disoriented
Mobil23 I use the internet to check the schedules and the departure

times of buses and trains.
Mobil24 I have always used public transports all my life
Mobil25 When I was young my parents took me to all my activities
Mobil26 I know some drivers of the public transports that I use
Mobil27 I think it is important to have the option to talk to the

drivers of public transports.
ResidCh01 I like living in a neighborhood where a lot of things happen.
ResidCh02 The accessibility and mobility conditions are important for

the choice of housing.
ResidCh03 Most of my friends live in the same region I live in.
ResidCh04 I would like to have access to more services or activities.
ResidCh05 I would like to live in the city center of a big city.
ResidCh06 I would like to live in a town situated in the outskirts of a

city.
ResidCh07 I would like to live in the countryside.
LifSty01 I always choose the best products regardless of price.
LifSty02 I always try to find the cheapest alternative.
LifSty03 I can ask for services in my neighborhood without problems.
LifSty04 I would like to spend more time with my family and friends.
LifSty05 Sometimes I would like to take a day off .
LifSty06 I can recognize the social status of other travelers by looking

at their cars.
LifSty07 The pleasure of having something beautiful consists in

showing it.
LifSty08 For me the car is only a practical way to move.
LifSty09 I would like to spend more time working.
LifSty10 I do not like to be in the same place for too long.
LifSty11 I always plan my activities well in advance
LifSty12 I like to experiment new or different situations
LifSty13 I am not afraid of unknown people
LifSty14 My schedule is rather regular.

9



Table 8: Descriptive statistics of the main variables (no data excluded)

nbr. cases nbr. null min max median mean std.dev
age 1906 0 -1 88 47 46.48 18.57
Choice 1906 536 0 2 1 0.78 0.54
TypeCommune 1906 0 1 9 6 5.39 1.99
UrbRur 1906 0 1 2 2 1.51 0.5
ClassifCodeLine 1906 0 1 4 4 3.17 0.97
LangCode 1906 0 1 2 2 1.74 0.44
CoderegionCAR 1906 0 1 8 5 4.58 2.08
CostCarCHF 1906 5 0 67.65 2.98 5.76 8.34
distance km 1906 1 0 519 18.75 40.38 62.6
TimeCar 1906 28 0 494 26 40.68 47.61
TimePT 1906 7 0 745 85 107.88 86.52
frequency 1906 0 1 4 3 2.84 1.09
ID 1906 0 10350017 96040538 44690042 45878800 23846908
InVehicleTime 1906 66 -128 631 40.5 55.13 57.78
MarginalCostPT 1906 270 0 230 5.6 11.11 16.13
NbTrajects 1906 0 1 9 2 2.04 1.05
NbTransf 1906 644 0 14 2 2.01 2.17
Region 1906 0 1 8 5 4.58 2.08
ReportedDuration 1906 3 -1 855 35 57.73 72.47
TripPurpose 1906 0 -1 3 2 1.94 1.18
WaitingTimePT 1906 693 0 392 5 13.13 22.07
WalkingTimePT 1906 17 0 213 33 39.63 28
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Table 9: Descriptive statistics of the main variables affected by missing data
(observations with -1 excluded)

nbr. cases nbr.null min max median mean std.dev
age 1791 0 16 88 48 49.53 14.59
ReportedDuration 1835 3 0 855 37 60 72.92
TripPurpose 1783 0 1 3 3 2.14 0.92

11



Choice with multiple alternatives – 5.3 Mode

choice in Switzerland

Michel Bierlaire

Practice quiz: reproduce the base model

The objective of this practice quiz is to reproduce the results of the base
logit model published in the paper

Attitudes towards mode choice in Switzerland, Atasoy et al. (2013)
[Click here].

A preliminary version of the paper is available as a technical report:

Atasoy et al. (2011) [Click here].

The model has three alternatives:

1. private motorized modes (PMM), including car, motorbike and taxi,

2. public transport (PT), including bus, train and car postal, and

3. slow modes (SM), including walking and bike.

The specification of the utilities is presented in Table 1.
We ask you to reproduce the results of the base model. To do so, perform

the following steps:

1. Download the Optima dataset provided in the file optima.dat (from
the edX webpage).

2. Check the definition of the variables in the file optimaDescription.pdf
(from the edX webpage).

1
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Table 1: Specification of the utility functions

Parameter VPMM VPT VSM

ASCCAR 1 - -
ASCPT - - -
ASCSM - - 1
βcost CostCarCHF MarginalCostPT -

βtimeCar
TimeCar - -

βtimePT
- TimePT -

βdistance - - distance km
βnbCars NbCar * (NbCar > 0) - -
βnbChild NbChild * (NbChild >

0)
- -

βfrench LangCode = 1 - -
βwork TripPurpose = 1 or

TripPurpose = 2
- -

βurban - UrbRur = 2 -
βstudent - OccupStat = 8 -
βnbBikes - - NbBicy * (NbBicy >

0)

2



3. Download the v532 optima template.py (from the edX webpage) file
and use it as a template to create the file v532 optima base.py with
the model specification defined in Table 1.

4. Estimate the parameters of the base model.

5. Compare your results with the ones reported in Atasoy et al. (2013)
[Click here]. You must obtain the same parameter values and final log
likelihood value.

References

Atasoy, B., Glerum, A. and Bierlaire, M. (2011). Attitudes towards mode
choice in switzerland, Technical Report TRANSP-OR 110502, Transport
and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

Atasoy, B., Glerum, A. and Bierlaire, M. (2013). Attitudes towards mode
choice in switzerland, disP - The Planning Review 49(2): 101–117.
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Choice with multiple alternatives – 5.3 Mode

choice in Switzerland

Michel Bierlaire

Solution to the practice quiz: reproduce the base model

• The model specification file that reproduces the results of the base
model presented in Atasoy et al. (2013) [Click here] and Atasoy et al.
(2011) [Click here] is

v532 optima base.py (from the edX webpage).

• The estimation results are available in the file

v532 optima base.html (from the edX webpage).

• The parameter estimates of the model are reported in Tables 1 and 2.

References

Atasoy, B., Glerum, A. and Bierlaire, M. (2011). Attitudes towards mode
choice in switzerland, Technical Report TRANSP-OR 110502, Transport
and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

Atasoy, B., Glerum, A. and Bierlaire, M. (2013). Attitudes towards mode
choice in switzerland, disP - The Planning Review 49(2): 101–117.
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Table 1: Estimation results: parameters estimates

Parameter Coeff. Robust
number Description estimate std. error t-stat p-value

1 ASCCAR -0.413 0.173 -2.39 0.02
2 ASCSM -0.470 0.369 -1.27 0.20
3 βcost -0.0592 0.0105 -5.61 0.00
4 βdistance -0.227 0.0531 -4.28 0.00
5 βfrench 1.09 0.159 6.89 0.00
6 βnbCars 1.00 0.0972 10.30 0.00
7 βnbChild 0.154 0.0647 2.37 0.02
8 βnbBikes 0.347 0.0548 6.34 0.00
9 βstudent 3.21 0.344 9.34 0.00
10 βtimeCar

-0.0299 0.00604 -4.96 0.00
11 βtimePT

-0.0121 0.00265 -4.55 0.00
12 βurban 0.286 0.123 2.33 0.02
13 βwork -0.582 0.116 -5.01 0.00

Table 2: Estimation results: summary statistics

Number of observations = 1906
Number of excluded observations = 359
Number of estimated parameters = 13
L(β0) = −2093.955

L(β̂) = −1067.356
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Choice with multiple alternatives – 5.4

Maximum likelihood estimation

Michel Bierlaire

The likelihood function for logit.

The maximum likelihood estimation method is exactly the same for logit
with multiple alternatives, as for the binary logit model. The logit model is

P
n
(i|C

n
) =

eVin

∑
j∈Cn

eVjn

. (1)

The log likelihood of a sample is

L(β1, . . . , βK
) =

N∑

n=1

(
∑

i∈Cn

y
in
lnP

n
(i|C

n
)

)
, (2)

where y
in
= 1 if individual n has chosen alternative i, 0 otherwise. Using (1)

into (2), we obtain

L(β1, . . . , βK
) =

N∑

n=1

∑

i∈Cn

y
in

(
V
in
− ln

∑

j∈Cn

eVjn

)
. (3)

The maximum likelihood estimation amounts to find the vector β solving the
optimization problem

max
β∈RK

L(β). (4)

In the case of logit, it can be shown (McFadden, 1974) that, if the utility
function is linear in the parameters, the log likelihood function is globally
concave and does not exhibit local maxima (under some relatively weak con-
ditions).
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The necessary first-order optimality conditions impose that the partial
derivatives with respect to each parameter is equal to zero. The kth partial
derivative is

∂L

∂β
k

=
N∑

n=1
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in

(
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in
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−
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k

)
for k = 1, . . . , K. (5)

Distributing the y
in
, we obtain
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∂β
k

=
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∑

i∈Cn

(y
in
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n
(i))
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in

∂β
k
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For a linear-in-parameters logit, it is

N∑

n=1

∑

i∈Cn

(y
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− P

n
(i))x

ink
, for k = 1, . . . , K. (7)

Setting these equations to zero leads to the necessary first-order optimality
conditions:
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=
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It means that the expected value of each attribute of the chosen alternative
must be the same when computed in the sample or with the choice model.

The reader can also verify that the second derivatives of L are given by

∂2L

β
k
β
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(9)
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Testing – 6.1 Specification testing

Michel Bierlaire

A short reminder on hypothesis testing

Hypothesis testing is a method to contradict a theoretical assumption
using data. In his seminal book on design of experiments, Fisher (1937)
uses the example of a lady who pretends to be able to tell if the milk has
been poured before of after the tea in a cup just by tasting it. This is the
theoretical assumption. An experiment is organized, where the lady is tasting
several cups of tea, and reports each time if the milk has been poured first
or not. The hypothesis to be tested, called the null hypothesis and often
denoted H0, is that the provided responses are purely random.

Hypothesis testing has some analogy with a court trial. In that context,
the theoretical assumption is that an individual has committed a felony. The
null hypothesis to be tested is that she is innocent. The main principle is that
the defendant is presumed innocent until proved guilty. Similarly, the null
hypothesis is considered correct, until the data provide sufficient evidences
that it is not.

Mathematically, the test of the hypothesis consists in identifying a statis-
tic calculated from the data that has a known distribution under the null
hypothesis. If the value of the statistic lies in the tail of the distribution,
that is, if the probability that such a value occurs is low under the null hy-
pothesis, it is rejected, acknowledging that there is a non zero probability
that an error is made. In the tea tasting example, the probability to give a
correct answer k times among n trials is given by a binomial distribution:

P (X = k) =

(
n

k

)
pk(1− p)n−k, (1)

where X is a random variable representing the number of successes, and p

is the probability of a success. The null hypothesis corresponds to p = 0.5.
Consider an experiment with 8 trials. It is easy to calculate that, under

1



the null hypothesis, the number of correct answers would be between zero
and six 96.5% of the time. Therefore, if it happens that seven or eight
correct answers are provided, the null hypothesis can be rejected with 3.5%
of confidence. If this is not considered sufficient for an evidence, it is possible
to be more strict. As there is 99.6% chance to obtain 7 correct answers or
less, the analyst could decide to reject the null hypothesis only when 8 correct
answers are provided, with confidence 0.4%.

The level of confidence is important. Indeed, because of the randomness
associated with the data generation process, the outcome of an hypothesis
test (that is, rejecting the null hypothesis or not), may be incorrect.

There are two types of potential errors, as illustrated in Table 1:

• Type I errors occur when the null hypothesis is true, and rejected by the
test. Using the analogy with the court trial, it corresponds to sending
an innocent to jail. It is sometimes called a “false positive”. We denote
α the conditional probability:

P (H0 is rejected |H0 is true) = α. (2)

It is called the significance level of the test.

• Type II errors occur when the null hypothesis is false, but not rejected
by the test. Using the analogy with the court trial, it corresponds to
releasing a culprit. It is sometimes called a “false negative”. We denote
β the conditional probability:

P (H0 is not rejected |H0 is false) = β. (3)

In practice, the analyst decides on α. The value 1− β, that is

P (H0 is rejected |H0 is false) = 1− β, (4)

is called the power of the test. Clearly, for a given data set, decreasing α

has the consequence to increase β. The extreme case is to never reject the
hypothesis, so that α = 0.

Back to our tea tasting example, suppose that the lady has actually the
ability to identify if the milk has been poured first or last, with 80% of success
rate, and consider again the two tests presented above.
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1. The first test rejects the hypothesis when there are 7 or 8 correct an-
swers. It fails to reject the (incorrect) null hypothesis β = 49.7% of the
time (verify using the binomial distribution with p = 0.8.) The power
of the test is 50.3%.

2. The second test rejects the hypothesis when there are 8 correct answers.
It fails to reject the (incorrect) null hypothesis β = 83.2% of the time.
The power of the test is only 16.8%.

We refer the reader to textbooks in statistics (such as Larsen and Marx
(2001, Chapter 6) for a comprehensive introduction to hypothesis testing.

Accept H0 Reject H0

H0 is true Type I error (prob. α)
H0 is false Type II error (prob. β)

Table 1: Type of errors in hypothesis testing
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Larsen, R. J. and Marx, M. L. (2001). An introduction to mathematical statis-

tics and its applications, Vol. 2, 3rd edn, Prentice-Hall, Upper Saddle
River, NJ.
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Testing
Specification testing

Michel Bierlaire

Introduction to choice models



Differences from classical hypothesis testing



Classical hypothesis testing: example

Null hypothesis (H0)
A simple hypothesis contradicting a theoretical assumption.

Lady testing tea

◮ Theory: a lady is able to tell if the milk has been
poured before of after the tea in a cup.

◮ H0: the outcome of the taste is purely random.



Specification testing: example

Null hypothesis (H0)
A simple hypothesis contradicting a theoretical assumption.

Explanatory variable

◮ Theory: a variable explains the choice behavior.

◮ H0: the coefficient of the variable is zero.



Errors in hypothesis testing



Errors in hypothesis testing

Type I error



Errors in hypothesis testing

Type I error Type II error



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

Type II error



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

Type II error

◮ H0 accepted and H0 false.



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

Type II error

◮ H0 accepted and H0 false.



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

Type II error

◮ H0 accepted and H0 false.

◮ Omit a relevant variable.



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

◮ Loss of efficiency.

Type II error

◮ H0 accepted and H0 false.

◮ Omit a relevant variable.



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

◮ Loss of efficiency.

Type II error

◮ H0 accepted and H0 false.

◮ Omit a relevant variable.

◮ Specification error.



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

◮ Loss of efficiency.

◮ Cost: CI .

Type II error

◮ H0 accepted and H0 false.

◮ Omit a relevant variable.

◮ Specification error.



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

◮ Loss of efficiency.

◮ Cost: CI .

Type II error

◮ H0 accepted and H0 false.

◮ Omit a relevant variable.

◮ Specification error.

◮ Cost: CII >> CI .



Errors in hypothesis testing

Type I error

◮ H0 rejected and H0 true.

◮ Include an irrelevant variable.

◮ Loss of efficiency.

◮ Cost: CI .

Type II error

◮ H0 accepted and H0 false.

◮ Omit a relevant variable.

◮ Specification error.

◮ Cost: CII >> CI .

Note
In classical hypothesis testing, CI ≈ CII
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Expected cost

Expected cost = P(Type I) CI + P(Type II) CII

= αλ CI + β(1− λ) CII

Classical hypothesis testing
λ ≈ 1, CI ≈ CII : prefer small α.



Impact of an error
Probability of an error

P(Type I) = P(H0 rejected|H0 true) P(H0 true)
α λ

P(Type II) = P(H0 accepted|H0 false) P(H0 false)
β (1− λ)

Expected cost

Expected cost = P(Type I) CI + P(Type II) CII

= αλ CI + β(1− λ) CII

Specification testing
λ ≈ 0.5, CII >> CI : larger α can be used.



Testing – 6.1 Specification testing

Michel Bierlaire

Practice quiz

1. If the hypothesis test does not reject the null hypothesis, we can con-
clude that the null hypothesis is true.

(a) True

(b) False

2. When we reject a true null hypothesis, we commit a Type I error.

(a) True

(b) False

3. When the null hypothesis is false and is not rejected, you make a type
II error.

(a) True

(b) False

4. The power of a test is the probability of rejecting the null hypothesis
when it is true.

(a) True

(b) False

5. If the level of significance α of a test is increased, the power of the test
decreases.

(a) True

(b) False

1



6. If a null hypothesis is rejected at the level of significance 0.01, it is also
rejected at the level of significance 0.05.

(a) True

(b) False

7. For a given level of significance, if the sample size is increased, the
power of the test decreases.

(a) True

(b) False

2



Testing – 6.1 Specification testing

Michel Bierlaire

Solution to practice quiz

1. If the hypothesis test does not reject the null hypothesis, we can con-
clude that the null hypothesis is true.

(a) True

(b) False

Correct answer: False. Hypothesis testing is never fully conclusive.
There is always a possibility to make the wrong decision. When the
null hypothesis is not rejected, it is because there is not enough evidence
to reject it. It does not mean that it is true. Similarly, a trial may fail
to convict a guilty criminal.

2. When we reject a true null hypothesis, we commit a Type I error.

(a) True

(b) False

Correct answer: True. A Type I error occurs when the null hypothesis
is rejected when it is true.

3. When the null hypothesis is false and is not rejected, you make a type
II error.

(a) True

(b) False

Correct answer: True. A Type II error occurs if we fail to reject the
null hypothesis when it is false.

1



4. The power of a test is the probability of rejecting the null hypothesis
when it is true.

(a) True

(b) False

Correct answer: False. The probability of rejecting the null hypothesis
when it is true is the Type I error. The power of a test is the probability
of rejecting the null hypothesis when it is false.

5. If the level of significance of a test is increased, the power of the test
decreases.

(a) True

(b) False

Correct answer: False. As the level of significance α increases, the
test rejects the null hypothesis more often. Therefore, if the null hy-
pothesis happens to be false, the risk β to make a mistake decreases.
Consequently, the power (1− β) increases.

6. If a null hypothesis is rejected at the level of significance 0.01, it is also
rejected at the level of significance 0.05.

(a) True

(b) False

Correct answer: True. The larger the level of significance, the most
likely it is to reject the null hypothesis.

7. For a given level of significance, if the sample size is increased, the
power of the test decreases.

(a) True

(b) False

Correct answer: False. As we have more information with a larger
sample, we can only do better. The power of the test increases.
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Informal tests are designed to identify early inconsistencies between the
estimated model and a priori expectations. We describe here the two most
common tests performed in practice.

For many variables in the utility function, we have a clear idea about
the sign of their coefficient. For instance, the coefficient of the cost variable
is always expected to be negative. Indeed, everything else being equal, a
cheaper alternative is preferred to a more expensive one. If the estimated
value of the coefficient does not have the expected sign, the issue must be
investigated.

The second test consists in changing the units of the utility function,
typically into monetary units. Suppose that the cost variable cin, expressed
in CHF, appears in the utility function:

Uin = βccin + β1xin1 + β2xin2 + · · · (1)

The values of the coefficients are impossible to interpret as such. Not only
their units are not intuitive, but they are also confounded with the scale
parameter.

As the utility function has no unit, the units of the coefficient βc are
1/CHF. Therefore, if the utility function is divided by βc, it is expressed in
CHF:

U ′

in = cin +
β1

βc

xin1 +
β2

βc

xin2 + · · · (2)

The ratio of the parameters can now easily be interpreted, as it is expressed
in monetary units. Moreover, as the coefficients at the numerator and the
denominator are scaled in the same way, the scale cancels out.

A typical example in transportation is the coefficient of the travel time
variable. If travel time is expressed in minutes, the coefficient βt of travel
time is in 1/minute. In the utility function expressed in monetary units, the
ratio βt/βc is expressed in CHF/minute. It is called the value of time, or the
willingness to pay for travel time savings. The value of time is often reported
in the literature. Therefore, the value that is obtained after estimation can
be compared to published value.

But the interpretation of the willingness to pay is not restricted to the
value of time. The willingness to pay to improve the value of other variables
can also be calculated and interpreted.

1



Testing – 6.2 Informal tests

Michel Bierlaire

Practice quiz

In a mode choice experiment with two alternatives, the following utility
functions are specified for private motorized mode (pmm) and public trans-
portation (pt):

U
pmm,n

= −β
c
· cost

pmm,n
− β

t
· time

pmm,n
+ ε

pmm,n

U
pt,n

= −β
c
· cost

pt,n
− β

t
· time

pt,n
+ ε

pt,n

(1)

where cost
pmm,n

and cost
pt,n

are the cost of the trip by private motorized
mode and public transportation respectively for individual n in CHF, and
time

pmm,n
and time

pt,n
are the corresponding travel times in minutes. The

error terms ε
pmm,n

and ε
pt,n

are i.i.d. Extreme Value: EV(0, 1).
We have a sample containing 10 observations:

Individual Choice time
pmm

time
pt

cost
pmm

cost
pt

1 pmm 10 20 2.3 1
2 pt 5 10 2.3 0.5
3 pmm 35 30 9 12
4 pmm 20 22 1.5 2
5 pt 6 7.5 2 1.25
6 pt 10 15 5 3.5
7 pt 8 5 3 2
8 pt 19 18 4 5
9 pt 22 19 7 8.5
10 pmm 8 8.5 3 9

The parameter estimates are β
c
= 1.38 and β

t
= 0.363

1. Can you check if the value of time makes sense, given that Axhausen
et al. (2008) report values ranging from 17.73 CHF/h to 50.23 CHF/h
for the value of time?

1



2. Plot these observations where the x-axis is time
pmm

− time
pt
and the y-

axis is cost
pmm

−cost
pt
. Use a different shape for the marker depending

on the observed choice.

3. Add to the previous plot the line −β
c
· cost

pmm
− β

t
· time

pmm
= −β

c
·

cost
pt
− β

t
· time

pt
. What does its slope represent?

References

Axhausen, K., Hess, S., Koenig, A., Abay, G., Bates, J. and Bierlaire, M.
(2008). Income and distance elasticities of values of travel time savings:
new swiss results, Transport Policy 15(3): 173–185.
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Testing – 6.2 Informal tests

Michel Bierlaire

Solution to the practice quiz

1. The value of time in [CHF/minute] is

VOT =
−βt

−βc

=
0.363

1.38
= 0.263 [CHF/min]

and to obtain it in [CHF/h] we need to multiply it by 60, so

VOT = 15.78 [CHF/h]

This value is lower than the value reported in the literature, but the
level of magnitude is similar, which is acceptable.

2. The plot is:
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0

5

Time PPM − Time PT
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t
P
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M

−
C
os
t
P
T

PPM
PT
VOT
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Note that, due to the presence of the error terms, the indifference line
does not separate exactly the PPM observations from the PT.

3. The slope is the value of time.
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Testing – 6.3 t-tests

Michel Bierlaire

The Boeing data set.

Before we start investigating the methodology for the t-test, we consider
another data set that will be used for illustration.

These data come from an Internet choice survey conducted by the Boe-
ing Company in the Fall of 2004. Boeing was interested in understanding
the sensitivity that air passengers have toward the attributes of an airline
itinerary, such as fare, travel time, transfers, legroom, and aircraft. It was
executed on a sample of the customers of an Internet airline booking service.
The Internet service takes a specific user request for travel in a city pair
and interrogates the web sites of airlines that provide service in that mar-
ket, returning to the user a compiled list of available itineraries. While that
interrogation is taking place, randomly selected customers were recruited to
be surveyed.

A typical page of the survey instrument is shown in Figure 1. The respon-
dent was offered three choices based on the origin-destination market request
that the respondent entered into the itinerary search engine. The first alter-
native is always a non-stop flight, the second always a flight with 1 stop on
the same airline, and the third is always a flight with 1 stop and a change
of airline. The respondent was asked to rank the available choices as well as
given the option to decline all of the stated options. Demographic data col-
lected included age, gender, income, occupation, and education. Situational
variables that were identified included: a) the desired departure time; b) trip
purpose; c) who is paying for the trip; and d) the number in the travel party.
All trips were for origin-destination city pairs in the United States.

1



Figure 1: The choice of airline itinerary: example of survey instrument
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Variable Description
Subj ID Unique identifier for each respondent.
Subj Male 1 if male, 2 otherwise
Subj Age Age, (1 = Less than 18 years, 2 = 18-24 years,

3= 25-34 years, 4 = 35-44 years, 5 = 45-54
years, 6 = 55-64 years, 7 = 65-74 years, 8 =
75 years or older

Subj Occupation Occupation (01 = Executive and Managerial,
02 = Professional, 03 = Technicians and re-
lated support, 04 = Sales, 05 = Administra-
tive support, 06 = Services, 07 = Precision
production, craft, repair, 08 = Machine opera-
tors, assemblers, inspectors, 09 = Transporta-
tion and material moving, 10 = Handlers,
cleaners, helpers, 11 = Farming, forestry, and
fishing, 12 = Armed forces)

Subj Income Annual income in 100$
Subj IncomeMissing Income is missing
Subj Education Education (01 = Less than High School

Diploma, 02 = High School Graduate, 03 =
Some college, No Degree, 04 = Associate De-
gree - Occupational, 05 = Associate Degree -
Academic, 06 = Bachelors Degree, 07 = Mas-
ters Degree, 08 = Professional Degree, 09 =
Doctorate Degree)

Table 1: The choice of airline itinerary: description of respondent specific
variables
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Variable Description
SP1 MostAttractive SP survey response to “Which is MOST at-

tractive”
SP2 LeastAttractive SP survey response to “Which is LEAST at-

tractive”
SP3 NotByAir SP survey response to “If these were the

ONLY three options available, I would NOT
make this trip by air” (1=yes, 2=no)

Table 2: The choice of airline itinerary: description of survey responses

Variable Description
Trip Purpose Trip purpose (1=business, 2=leisure, 3=at-

tending conference/seminar/training, 4=both
business and leisure)

Trip TravelerPays 1 if the traveler is paying for the trip, 2 if it is
his employer, 3 if it is a third party

Trip IdealDepartureTime Respondents ideal departure time (hours after
midnight)

Trip PartySize Number of persons traveling
Trip OrigMinGMT Origin city time zone (minutes from GMT

(Greenwich Mean Time))
Trip DestMinGMT Destination city time zone (minutes from

GMT)
Trip BaseFlightTime Flight time for shortest non-stop itinerary in

minutes
Trip Miles Length of itinerary in miles
Trip Direction Direction of itinerary (1=East to West,

2=West to East, 3=North-South)

Table 3: The choice of airline itinerary: description of trip specific attributes

4



Variable Description
OptX DepTimeHrs Option X: Departure time, local (hours after

midnight)
OptX ArrTimeHrs Option X: Arrival time, local (hours after mid-

night)
OptX TotalTimeInAir Option X: Total time in air (hours)
OptX TotalTriptime Option X: Total trip time (hours)
OptX Legroom Option X: Legroom in Inches, -2 = 2 inches

less than typical, 0 = typical, 2 = 2 inches
more than typical, 4 = 4 inches more than
typical

OptX AirlineA Option X: Airline for first leg (only known to
arbitrary airline number for proprietary rea-
sons)

OptX AirlineB Option X: Airline for second leg (if there exists
a second leg) (only known to arbitrary airline
number for proprietary reasons)

OptX AirplaneA Option X: Airplane for first leg (only known
to arbitrary airplane number for proprietary
reasons)

OptX AirplaneB Option X: Airplane for second leg (if there ex-
ists a second leg) (only known to arbitrary air-
plane number for proprietary reasons)

OptX Fare Option X: Fare ($)
OptX SchedDelayEarly Option X: Schedule delay (hours) - early de-

parture (calculated from OptX DepTimeHrs
and Trip IdealDepartureTime)

OptX SchedDelayLate Option X: Schedule delay (hours) - late depar-
ture (calculated from OptX DepTimeHrs and
Trip IdealDepartureTime)

Table 4: The choice of airline itinerary: description of alternative specific
attributes where X corresponds to the choice option (1),(2) and (3)
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Variable Average St. Dev. Min Max
Subj ID 1807.97 1043.03 1.00 3613.00
Subj Male 0.50 0.50 0 1.00
Subj Age 3.95 1.14 1.00 8.00
Subj Occupation 2.54 1.89 1.00 12.00
Subj Income 107.08 81.40 10.00 350.00
Subj IncomeMissing 0.1 0.30 0.00 1.00
Subj Education 5.88 1.71 1.00 9.00
Trip Purpose 2.04 0.77 1.00 4.00
Trip TravelerPays 1.20 0.46 1.00 3.00
Trip IdealDepartureTime 12.75 4.99 0 23.75
Trip PartySize 1.70 0.99 1.00 5.00
Trip OrigMinGMT 382.18 82.07 300.00 480.00
Trip DestMinGMT 397.34 82.86 300.00 480.00
Trip BaseFlightTime 224.14 95.15 40.00 381.00
Trip Miles 1568.43 783.79 119.00 2719.00
Trip Direction 1.91 0.87 1.00 3.00
SP1 MostAttractive 1.45 0.73 1.00 3.00
SP2 LeastAttractive 2.36 0.68 1.00 3.00
SP3 NotByAir 1.60 0.54 1.00 2.00
Opt1 DepTimeHrs 11.72 3.34 6.00 18.00
Opt1 ArrTimeHrs 15.21 3.35 7.67 21.63
Opt1 TotalTimeInAir 3.73 1.59 0.67 6.35
Opt1 TotalTriptime 3.73 1.59 0.67 6.35
Opt1 Legroom 0.92 2.24 -2.00 4.00
Opt1 AirlineA 4.52 2.60 1.00 11.00
Opt1 AirlineB 0.00 0.00 0.00 0.00
Opt1 AirplaneA 4.57 2.30 1.00 8.00
Opt1 AirplaneB 0.00 0.00 0.00 0.00
Opt1 Fare 405.65 199.84 80 1330
Opt1 SchedDelayEarly 2.04 3.98 0.00 17.00
Opt1 SchedDelayLate 2.28 2.91 0.00 21.38

Table 5: The choice of airline itinerary: descriptive statistics of variables
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Variable Average St. Dev. Min Max
Opt2 DepTimeHrs 11.67 3.35 6.00 18.00
Opt2 ArrTimeHrs 16.92 3.36 9.17 24.10
Opt2 TotalTimeInAir 4.23 1.59 1.16 6.85
Opt2 TotalTriptime 5.50 1.67 1.83 8.85
Opt2 Legroom 0.96 2.25 -2.00 4.00
Opt2 AirlineA 4.68 2.67 1.00 11.00
Opt2 AirlineB 0.00 0.00 0.00 0.00
Opt2 AirplaneA 4.46 2.32 1.00 8.00
Opt2 AirplaneB 4.40 2.34 1.00 8.00
Opt2 Fare 407.07 200.93 80.00 1390.00
Opt2 SchedDelayEarly 1.92 4.05 0.00 17.75
Opt2 SchedDelayLate 2.75 2.81 0.00 23.38
Opt3 DepTimeHrs 11.66 3.34 6.00 18.00
Opt3 ArrTimeHrs 16.89 3.41 9.25 24.03
Opt3 TotalTimeInAir 4.24 1.59 1.16 6.85
Opt3 TotalTriptime 5.48 1.67 1.92 8.85
Opt3 Legroom 1.06 2.25 -2.00 4.00
Opt3 AirlineA 4.63 2.61 1.00 11.00
Opt3 AirlineB 4.73 2.67 1.00 11.00
Opt3 AirplaneA 4.49 2.33 1.00 8.00
Opt3 AirplaneB 4.52 2.27 1.00 8.00
Opt3 Fare 405.20 197.65 80.00 1275.00
Opt3 SchedDelayEarly 1.92 3.98 0.00 17.00
Opt3 SchedDelayLate 2.73 2.78 0.00 22.97

Table 6: The choice of airline itinerary: descriptive statistics of variables
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Testing – 6.3 t-tests

Michel Bierlaire

Bootstrap

The calculation of the t statistics is described in Week 3. It relies on ap-
proximations of the variance-covariance matrix of the estimates: the Cramer-
Rao bound, and the robust/sandwich estimator. These approximations are
derived from theoretical developments.

Alternatively, the variance covariance matrix can be approximated em-
pirically using simulation. The technique, called bootstrapping, is described
by Algorithm 1.

Algorithm 1 Approximate the variance-covariance matrix by bootstrapping

1: Consider a sample of N observations.
2: for r = 1, . . . , R do

3: Draw N observations from the sample with replacement.
4: Calculate the maximum likelihood estimates β̂r using the drawn sam-

ple.
5: end for

6: Calculate the empirical variance-covariance matrix of the vectors β̂r, r =
1, . . . , R.

1
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Usage of the t-tests



t-test

Question
Is the parameter θ significantly different from a given value θ∗?

◮ H0 : θ = θ∗

◮ H1 : θ 6= θ∗

Statistic (assuming maximum likelihood estimator)
Under H0, if θ̂ is normally distributed with known variance σ2

θ̂ − θ∗

σ
∼ N(0, 1).



t-test: under H0

-1.96 1.96

95%



t-test: if the statistic lies outside

-1.96 1.96

95%

H0 is rejected at the 5% level.



Applying the test

Statistic

P(−1.96 ≤
θ̂ − θ∗

σ
≤ 1.96) = 0.95 = 1− 0.05

Decision
H0 can be rejected at the 5% level (α = 0.05) if

∣∣∣∣∣
θ̂ − θ∗

σ

∣∣∣∣∣ ≥ 1.96.



Comments

◮ If θ̂ asymptotically normal

◮ If variance unknown

◮ A t test should be used with N degrees of freedom.

◮ When N ≥ 30, the Student t distribution is well approximated by a N(0, 1)



p value

◮ probability to get a t statistic at least as large (in absolute value) as the one
reported, under the null hypothesis

◮ it is calculated as
p = 2(1− Φ(t))

where Φ(·) is the CDF of the standard normal.

◮ the null hypothesis is rejected when the p-value is lower than the
significance level (typically 0.05)



Comparing two coefficients

Hypothesis

H0 : β1 = β2.

Statistic

β̂1 − β̂2√
Var(β̂1 − β̂2)

where
Var(β̂1 − β̂2) = Var(β̂1) + Var(β̂2)− 2Cov(β̂1, β̂2)

Distribution
Under H0, distributed as N(0, 1).



Testing – 6.3 t-tests

Michel Bierlaire

Practice quiz

The parameters of a model have been estimated using the Boeing dataset:
boeing.dat (from the edX webpage), described in BoeingDescription.pdf

(from the edX webpage). The output of the estimation is available in the file

v634 Boeing M0.html (from the edX webpage).

Answer the following questions by performing t-tests:

1. Test the null hypothesis that the true value of the coefficient of the
variable “being early” is zero?

2. Test the null hypothesis that the coefficients of the variables “elapsed
time” for alternatives “non stop” and “one stop–same airline” are equal.

3. Test the null hypothesis that the coefficients of the variables “elapsed
time” for alternatives “non stop” and “one stop–multiple airlines” are
equal.

4. Test the null hypothesis that the coefficients of the variables “elapsed
time” for alternatives “one-stop–same airline” and “one stop–multiple
airlines” are equal.

1



Testing – 6.3 t-tests

Michel Bierlaire

Solution to the practice quiz

The estimation results are available in the file

v634 Boeing M0.html (from the edX webpage).

1. Testing the null hypothesis that the true value of the coefficient of the
variable “being early” is zero requires a t-test. The t statistic of param-
eter SchedDelayEarly is -8.02 which is larger in absolute value than
2.56, so the null hypothesis can be rejected at the 1% level. Actu-
ally, the fact that the p value is so small that the two first digits after
the decimal point are zero, is a sign that the hypothesis can be safely
rejected at any reasonable level. The variable plays a role in the model.

2. The next three questions require a t-test to compare two coefficients βi

and βj. The null hypothesis is that both parameters are equal (H0 :
βi = βj) and the t-statistic is given by

β̂i − β̂j√
Var(β̂i − β̂j)

where
Var(β̂i − β̂j) = Var(β̂i) + Var(β̂j)− 2Cov(β̂i, β̂j).

The variance of a parameter is the square of its standard error. The
complete variance-covariance matrix can be found in v634 Boeing M0.html

(from the edX webpage). It is reported in Table 1 for the involved co-
efficients.

1



B ElapsedTime 1 B ElapsedTime 2 0.00627
B ElapsedTime 1 B ElapsedTime 3 0.00600
B ElapsedTime 2 B ElapsedTime 3 0.00553

Table 1: Covariances for the involved coefficients

The three t-tests are applied below.
H0: B ElapsedTime 1=B ElapsedTime 2

β̂1 − β̂2√
Var(β̂1 − β̂2)

=
−0.341− (−0.291)

√
0.00729 + 0.00676− 2× 0.00627

= −1.28,

and the p-value is 0.2. Note that these two values are readily available
in the HTML file. The null hypothesis can be rejected only at the 20%
level. It is therefore reasonable not to reject it.

3. H0: B ElapsedTime 2=B ElapsedTime 3

β̂2 − β̂3√
Var(β̂2 − β̂3)

=
−0.291− (−0.310)

√
0.00676 + 0.00643− 2× 0.00553

= 0.41,

and the p-value is 0.68. Note that these two values are readily available
in the HTML file. The null hypothesis can be rejected only at the 68%
level. It is therefore reasonable not to reject it.

4. H0: B ElapsedTime 1=B ElapsedTime 3

β̂1 − β̂3√
Var(β̂1 − β̂3)

=
−0.341− (−0.310)

√
0.00729 + 0.00643− 2× 0.006

= −0.74,

and the p-value is 0.46. Note that these two values are readily available
in the HTML file. The null hypothesis can be rejected only at the 46%
level. It is therefore reasonable not to reject it.

In conclusion, we have no evidence from the data that suggests that the
coefficient of the variable “elapsed time” is alternative specific. Consequently,
in such circumstances, it may be worth investigating a model with a generic
elapsed time, that will be more parsimonious.
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The general motivation of the likelihood ratio test is to investigate par-
simonious versions of a given specification, by introducing linear restrictions
on the parameters. The null hypothesis of the test is that the parsimonious,
or restricted, model is the true model. If it is rejected, the unrestricted model
is preferred.

It can be shown (Wilks, 1938) that under the null hypothesis H0, the
statistic

− 2(L(β̂R)− L(β̂U)) ∼ χ2

(KU−KR)
, (1)

where

• L(β̂R) is the log likelihood of the restricted model,

• L(β̂U) is the log likelihood of the unrestricted model,

• KR is the number of parameters in the restricted model, and,

• KU is the number of parameters in the unrestricted model.

The simple hypothesis (that is, the restricted model is correct) and the
composite hypothesis (that is, the unrestricted model is correct) are said to
be nested1, because the former can be obtained from the latter using linear
restrictions. Note that the test can only be applied for nested hypotheses.

The test can be written in terms of likelihood. As

L(β̂R) = logL∗(β̂R) and L(β̂U) = logL∗(β̂U), (2)

we can write (1) as

− 2 log
L∗(β̂R)

L∗(β̂U)
∼ χ2

(KU−KR)
, (3)

that explains the name of the test.

References

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for
testing composite hypotheses, Ann. Math. Statist. 9(1): 60–62.
URL: http://dx.doi.org/10.1214/aoms/1177732360

1This has nothing to do with the nested logit model.
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Applications of the likelihood ratio test



Benchmarking

Unrestricted model

Vin = β1xink + · · ·

Vjn = β2xjnk + · · ·

...

Restricted model
Equal probability model

Vin = 0

Vjn = 0

...

Restrictions

βk = 0, ∀k



Benchmarking

Log likelihood of the unrestricted
model

L(β̂)

Log likelihood of the restricted
model

Pin = 1/Jn, ∀i ∈ Cn, ∀n

L(0) = −

N∑

n=1

log(Jn)

Statistic

−2(L(0)− L(β̂)) ∼ χ2

K



Benchmarking revisited

Unrestricted model

Vin = β1xink + · · ·

Vjn = β2xjnk + · · ·

...

Restricted model
Only alternative specific constants

Vin = βi

Vjn = βj

...

Restrictions

All coefficients but the constants are constrained to zero.



Benchmarking revisited

Log likelihood of the unrestricted
model

L(β̂)

Log likelihood of the restricted
model

Pin = Ni/N ∀i ∈ C, ∀n

L(c) =
J∑

i=1

Ni log(Ni/N)

Statistic

−2(L(c)− L(β̂)) ∼ χ2

d with d = K − J + 1



Benchmarking

Classical output of estimation software
Summary statistics

Number of observations = 2544
L(0) = −2794.870
L(c) = −2203.160

L(β̂) = −1640.525

−2[L(0)− L(β̂)] = 2308.689



Test of generic attributes

Unrestricted model
Alternative specific

Vin = β1ixink + · · ·

Vjn = β1jxjnk + · · ·

...

Restricted model
Generic

Vin = β1xink + · · ·

Vjn = β1xjnk + · · ·

...

Restriction

β1i = β1j = · · ·



Test of generic attributes

Log likelihood of the unrestricted
model

L(β̂AS)

Log likelihood of the restricted
model

L(β̂G )

Statistic

−2(L(β̂G )− L(β̂AS)) ∼ χ2

d with d = KAS − KG



Test of taste variations

Segmentation

◮ Classify the data into G groups. Size of group g : Ng .

◮ The same specification is considered for each group.

◮ A different set of parameters is estimated for each group.



Test of taste variations

N1 N2 N3 N4

LN1
(β̂1) LN2

(β̂2) LN3
(β̂3) LN4

(β̂4)
∑G

g=1
LNg

(β̂g )

N



Test of taste variations

Unrestricted model
Group specific coefficients

Vin =
G∑

g=1

(δngβ1g )xink + · · ·

Vjn =
G∑

g=1

(δngβ2g )xjnk + · · ·

...

Restricted model
Generic coefficients

Vin = β1xink + · · ·

Vjn = β2xjnk + · · ·

...

Restrictions

βk1 = βk2 = · · · = βkG , ∀k .



Test of taste variations

Log likelihood of the unrestricted
model

G∑

g=1

LNg
(β̂g )

Log likelihood of the restricted
model

LN(β̂)

Statistic

−2

[
LN(β̂)−

G∑

g=1

LNg
(β̂g )

]
∼ χ2

d with d =
G∑

g=1

K − K = (G − 1)K .



Tests of nonlinear specifications

Unrestricted model
Power series

Vin =
L∑

ℓ=1

β1ℓ

xink

xref

ℓ

+ · · ·

Vjn = β2xjnk + · · ·

...

Restricted model
Linear specification

Vin = β1xink + · · ·

Vjn = β2xjnk + · · ·

...

Restrictions

β12 = β13 = · · · = β1L = 0



Power series

xink

Vin



Test of nonlinear specifications

Log likelihood of the unrestricted
model

L(β̂U)

Log likelihood of the restricted
model

L(β̂R)

Statistic

−2
[
L(β̂R)− L(β̂U)

]
∼ χ2

d with d = L− 1



Notes

◮ Usually not behaviorally meaningful

◮ Danger of overfitting

◮ Polynomials are most of the time inappropriate for extrapolation due to
oscillation

◮ Other nonlinear specifications can be used for testing
◮ Piecewise linear

◮ Box-Cox
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Practice quiz

In a mode choice case study, consider the models with the following utility
specifications (where the index n related to the individual has been dropped
to simplify the notations):

1. Linear with generic coefficients

Ucar = ASCcar + βtt · ttcar + βtc · tccar + εcar,

Upt = βtt · ttpt + βtc · tcpt + εpt.

2. Linear with alternative specific coefficients

Ucar = ASCcar + βtt,car · ttcar + βtc,car · tccar + εcar,

Upt = βtt,pt · ttpt + βtc,pt · tcpt + εpt.

3. Power series

Ucar = ASCcar + βtt · ttcar + βtc · tccar + βtc squared · tc
2
car + εcar,

Upt = βtt · ttpt + βtc · tcpt + βtc squared · tc
2
pt + εpt.

4. Box-cox

Ucar = ASCcar + βtt boxcox
·
(ttcar − 1)λ

λ
+ βtc · tccar + εcar,

Upt = βtt boxcox
·
(ttpt − 1)λ

λ
+ βtc · tcpt + εpt.

5. Logarithm

Ucar = ASCcar + βtt · ttcar + βtc log · log(tccar) + εcar,

Upt = βtt · ttpt + βtc log · log(tcpt) + εpt.

1



6. Piecewise linear

Ucar =ASCcar + βtt,<15 · ttcar,<15 + βtt,[15,60) · ttcar,[15,60) + βtt,≥60 · ttcar,≥60

+ βtc · tccar + εcar,

Upt =βtt,<15 · ttpt,<15 + βtt,[15,60) · ttpt,[15,60) + βtt,≥60 · ttpt,≥60 + βtc · tcpt + εpt.

where for i ∈ {car, pt}

tt
i,<15 =

{
tt

i
, if tt

i
< 15

15, otherwise,

ttcar,[15,60) =






0, if tt
i
< 15

tt
i
− 15, if tt

i
∈ [15, 60)

60, otherwise,

tt
i,≥60 =

{
0, if tt

i
< 60

tt
i
− 60, otherwise.

where ttcar and ttpt are the travel times in minutes by car and public trans-
portation respectively, tccar and tcpt are the travel costs in CHF of car and
public transportation respectively; ASCcar, β’s and λ are parameters to be

estimated; and εcar, εpt
iid

∼ EV (0, 1).
When we want to test two of these models, when can we apply the like-

lihood ratio test?
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Solution to the practice quiz

• Models 1 and 2 can be compared using the likelihood ratio test: the
linear restrictions are βtt,car = βtt,pt and βtc,car = βtc,pt.

• Models 1 and 3 can be compared using the likelihood ratio test: the
linear restriction is βtc squared = 0.

• Models 1 and 4 can be compared using the likelihood ratio test: the
linear restriction is λ = 1.

• Models 1 and 6 can be compared using the likelihood ratio test: the
linear restrictions are βtt,<15 = βtt,[15,60) = βtt,≥60.

No other pair of models can be compared using a likelihood ratio test, as
none of them can be obtained from the other one using linear restrictions.

1
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Michel Bierlaire

Practice quiz: Boeing

Question

1. Consider the two models (M1 leisure and M2) for which the python-
biogeme files have been provided:

• v643 Boeing M1 leisure.py (from the edX webpage),

• v643 Boeing M2.py (from the edX webpage).

Both models can be compared using a likelihood ratio test. Justify
why, explicitly writing the linear restrictions. Which model is better
according to a likelihood ratio test?

2. Consider models M0 and M3, for which the pythonbiogeme files have
been provided:

• v643 Boeing M0.py (from the edX webpage),

• v643 Boeing M3.py (from the edX webpage).

Is the elapsed time perceived differently depending on the alternative
considered? Perform a likelihood ratio test to answer, and justify why
you can use it by explicitly writing the linear restrictions.

3. Consider model M1, for which the pythonbiogeme file has been pro-
vided. Is there taste variation across all parameters depending on the
trip purpose? Hint: use models

• v643 Boeing M1 leisure.py (from the edX webpage),

• v643 Boeing M1 nonleisure.py (from the edX webpage) and

1



• v643 Boeing M1.py (from the edX webpage)
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Michel Bierlaire

Solution to practice quiz: Boeing

1. The estimation results of models M1 leisure and M2 are available in
the files

• v643 Boeing M1 leisure.html (from the edX webpage), and

• v643 Boeing M2.html (from the edX webpage).

We can compare both by using a likelihood ratio test (LRT) since we
can define H0 using linear restrictions:

• LegroomOpt1 Male = LegroomOpt23 Male,

• LegroomOpt1 Female = LegroomOpt23 Female,

• FareOverIncome = 0.

Following the notations from the previous lecture,

• L(β̂
U
) = −1640.525,

• L(β̂
R
) = −1652.573,

• K
U
= 15, and

• K
R
= 12.

So the likelihood ratio test is

−2(−1652.573 + 1640.525) = 24.096.

The number of degrees of freedom for the test is K
U
−K

R
= 3, which

happens also to be the number of linear restrictions. The threshold for
the test at 5% level is therefore χ2

3,0.05
= 7.81. Since 24.096 > 7.81, we

can reject H0 at the 5% level. According to the LRT, the hypothesis
that the two models are equivalent can be rejected. Therefore, the
unrestricted model (M1 leisure) is preferred.

1



2. The estimation results of models M0 and M3 are available in

• v643 Boeing M0.html (from the edX webpage), and

• v643 Boeing M3.html (from the edX webpage).

The LRT can be used since we can define H0 using linear restrictions:
B ElapsedTime 1=B ElapsedTime 2=B ElapsedTime 3. Following the
notations from the previous lecture,

• L(β̂
R
) = −1642.796,

• L(β̂
U
) = −1641.932,

• K
U
= 15, and,

• K
R
= 13.

So the likelihood ratio test is

−2(−1642.796 + 1641.932) = 1.728.

The number of degrees of freedom for the test is K
U
− K

R
= 2. The

threshold of interest is here χ2

2,0.05
= 5.99. Since 1.728 < 5.99, we

cannot reject the hypothesis that the two models are equivalent at the
5% level. Therefore, the restricted model (M3) is preferred, as it is
more parsimonious.

Note that it yields the same conclusion as the practice quiz in the
previous section when we used a t-test. This is not always the case. It
may happen that testing the same hypothesis with two different tests
yields to different conclusions.

3. The likelihood ratio test can also be used to test variations between
market segments in the following way. We have two groups of travelers:
leisure (2544) and non leisure (1065). We estimate the exact same
model specification on

• the full population (v643 Boeing M1.html (from the edX web-
page)),

• leisure travelers only (v643 Boeing M1 leisure.html (from the
edX webpage)),

2



• non leisure travelers only (v643 Boeing M1 nonleisure.html (from
the edX webpage)).

The LRT can be used since the null hypothesis is defined using lin-
ear restrictions, that is each parameter estimated for the first segment
is equal to the corresponding parameter estimated for the other seg-
ment. The number of restrictions is therefore equal to the number of
parameters in the original model.

Table 1 summarizes the data extracted from the estimation results,
needed to perform a likelihood ratio test. Note that the unrestricted

values are obtained from the sum of the rows leisure and non leisure:
Therefore, the likelihood ratio test is:

Model L(β̂) Sample size K
Restricted -2300.453 3609 15
Leisure -1640.525 2544 15
Non leisure -629.080 1065 15
Unrestricted -2269.605 3609 30

Table 1: Summary of the estimation results

−2(−2300.453 + 2269.605) = 61.696.

The threshold of interest is here χ2

15,0.05
= 25.00. We can therefore

reject the null hypothesis that there is no taste variation across trip
purposes.
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Introduction to choice models



The Cox test



Non nested hypotheses

Nested hypotheses

◮ Restricted and unrestricted models

◮ Linear restrictions

◮ H0: restricted model is correct

◮ Test: likelihood ratio test

Non nested hypotheses

◮ Need to compare two models

◮ None of them is a restriction of the other

◮ Likelihood ratio test cannot be used



Example

Model 1

Vin = β1xink + · · ·

Vjn = β2xjnk + · · ·

...

Model 2

Vin = β1 log(xink) + · · ·

Vjn = β2 log(xjnk) + · · ·

...



Cox test

Back to nested hypotheses

◮ We want to test model 1 against model 2

◮ We generate a composite model C such that both models 1 and 2 are
restricted cases of model C.

Model C

Model 1 Model 2



Example

Model 1

Vin = β1xink + · · ·

Vjn = β2xjnk + · · ·

...

Model 2

Vin = β1 log(xink) + · · ·

Vjn = β2 log(xjnk) + · · ·

...

Model C

Vin = β11xink + β12 log(xink) + · · ·

Vjn = β21xjnk + β22 log(xjnk) + · · ·

...



Cox test

Testing

◮ We test 1 against C using the likelihood ratio test

◮ We test 2 against C using the likelihood ratio test

Conclusions

C against 1 C against 2 Conclusion
1 is not rejected 2 is rejected Prefer 1
1 is rejected 2 is not rejected Prefer 2
1 is rejected 2 is rejected Develop better models
1 is not rejected 2 is not rejected Use another test
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Davidson and McKinnon J test.

A disadvantage of the Cox test is the need to estimate a model with a
potentially very large number of parameters. We now describe the J test
developed by Davidson and MacKinnon (1981) which is a general solution
to the selection between two non-nested models. The J test is in general
preferred to the Cox test. As we will see, it is also subject to the same four
outcomes.

This is a general treatment based on generating artificial regressions that
embed two competing non nested model formulations to explain a given
dependent variable. Consider two specifications:

M1 : Uin = V
(1)

in (xin; β) + ε
(1)

in , (1)

M2 : Uin = V
(2)

in (xin; γ) + ε
(2)

in . (2)

To choose between model 1 in Equation (1) and model 2 in Equation (2),
we consider the following composite specification:

MC : Uin = (1− α)V
(1)

in (xin; β) + αV
(2)

in (xin; γ) + εin. (3)

Intuitively, the idea is to test the competing models against the compos-
ite model in equation (3). Note that if α = 0, the model collapses to the
model M1 while with α = 1, the composite model collapses to the model M2.
The major problem is that very often, the composite model cannot be esti-
mated. Namely, there may be exact multicollinearity among the explanatory
variables. Moreover, the α coefficient may not be identified.

The J test solution to this problem is to replace the unknown parameters
not being tested by consistent estimates. In order to test M1, one could
consider the following composite model:

MC : Uin = (1− α)V
(1)

in (xin; β) + αV
(2)

in (xin; γ̂) + εin, (4)

1



where model 2 in Equation (2) has been previously estimated, and γ̂ is the

vector of estimates. Thus, V
(2)

in (xin; γ̂) corresponds to the fitted systematic
utility of model 2 and represents in this artificial model a single variable
associated with the parameter α. Under the null hypothesis that model 1 is
correct, the true value of α in the composite model is 0. The objective is
then to test if α = 0 using a t test. This would involve estimating model 1
with the additional variable computed as V

(2)

in (xin; γ̂).
In order to test M2, one could instead consider the following composite

model:
MC : Uin = (1− α)V

(1)

in (xin; β̂) + αV
(2)

in (xin; γ) + εin. (5)

where model 1 in Equation (1) has been previously estimated. Thus, V
(1)

in (xin; β̂)
corresponds to the fitted systematic utility of model 1 and represents in this
artificial model a single variable associated with the parameter (1− α). Un-
der the null hypothesis that model 2 is correct, the true value of α is 1. The
objective is then to test if α = 1 using a t test.

The J test has the same four outcomes presented for the Cox test, that
is

• M1 is rejected and M2 is not rejected. Then, it is reasonable to prefer
model 2.

• M1 is not rejected and M2 is rejected. Then it is reasonable to prefer
model 1.

• M1 and M2 are rejected. This indicates that better models should be
developed.

• Neither M1 nor M2 can be rejected. Then, in this case, the data does
not seem to be informative enough to distinguish between the two com-
peting models, and the ρ̄2 should be used.

It should now be clear that one of the two models does not have to represent
the truth. Both models could be unsatisfactory.

References

Davidson, R. and MacKinnon, J. (1981). Several tests for model specification
in the presence of alternative hypotheses, Econometrica: Journal of the

Econometric Society pp. 781–793.
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Adjusted likelihood ratio index.

The likelihood ratio index is defined as

ρ2 = 1−
L(β̂)

L(0)
, (1)

and called “rho-squared” by analogy to the R2 in regression analysis. Note
that it is not the square of anything. And even if it generally lies between
zero (when L(β̂) = L(0)) and one (when the model perfectly fits the data

and L(β̂) = 0), there is no absolute interpretation of its value.
For the same estimation data set, the ρ2 of a model always increases or

at least stays the same whenever new variables are added to the model, even
if they are actually irrelevant. This is the motivation to use the adjusted
likelihood ratio index (rho bar squared):

ρ̄2 = 1−
L(β̂)−K

L(0)
. (2)

where K is the number of unknown parameters in the model.
The adjusted likelihood ratio index ρ̄2 can be used for testing non nested

hypotheses of discrete choice models. Under the null hypothesis that model
1 is the true specification, compared to model 2, the following holds asymp-
totically:

Pr(ρ̄2
2
≥ z + ρ̄2

1
) ≤ Φ{−

√
−2zL(0) + (K1 −K2)}, z > 0, (3)

where

• ρ̄2
ℓ
is the the adjusted likelihood ratio index for model ℓ,

1



• K
ℓ
is the number of parameters in model ℓ,

• Φ(·) is the standard normal cumulative distribution function.

This can be used to answer the following question: if we select the model
with the largest ρ̄2, what is the probability that we make a mistake? In other
words, if the true model is model 1, what is the probability that ρ̄2

2
is larger

than z + ρ̄2
1
, for some threshold z?

When all N observations in the sample have all J alternatives, we have

L(0) = −N log J (4)

the bound becomes

Pr(ρ̄2
2
≥ z + ρ̄2

1
) ≤ Φ{−

√
2Nz log J + (K1 −K2)}, z > 0. (5)

Consider an example with J = 2 alternatives, N = 300 observations and
two models with the same number of parameters (K1 = K2). Then we have

Pr(ρ̄2
2
≥ 0.0001 + ρ̄2

1
) ≤ 41.92% (6)

Pr(ρ̄2
2
≥ 0.001 + ρ̄2

1
) ≤ 25.95% (7)

Pr(ρ̄2
2
≥ 0.01 + ρ̄2

1
) ≤ 2.07% (8)

For z = 0.1 and above, the probability is practically zero.

2



Testing – 6.5 Non nested hypotheses

Michel Bierlaire

Practice quiz

Consider the specification files

• v655 Boeing M1 leisure.py (from the edX webpage) and

• v655 Boeing M1 leisure sq.py (from the edX webpage),

and the associate dataset: boeing.dat (from the edX webpage). You shall
use them to estimate the parameters of the models and to perform the fol-
lowing tasks:

1. Compare both models using a Cox test. Which of the two models
should be preferred?

2. Compare both models using a Davidson and McKinnon J-test. Which
of the two models should be preferred?

1
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Solution to the practice quiz

1. None of the two models can be obtained using linear restrictions from
the other one. Consequently, we cannot use a likelihood ratio test.
Instead we use a Cox test. To do so, we define a composite model that
contains a combination of the specifications of each model:

v655 Boeing M1 leisure composite.py (from the edX webpage).

By design, each of the two models to be tested can be obtained using
linear restrictions of the composite model. Therefore, we can apply two
likelihood ratio tests. The estimation results are found in the files

• v655 Boeing M1 leisure.html (from the edX webpage),

• v655 Boeing M1 leisure sq.html (from the edX webpage), and

• v655 Boeing M1 leisure composite.html (from the edX web-
page).

Table 1 shows a summary of the final log likelihood of the three models.
Finally, Table 2 shows a summary of the likelihood ratio tests between
the composite model and the other two. As M1 leisure sq is rejected,
and not M1 leisure, the latter is preferred.

2. We can use two Davidson and McKinnon J-tests to compare these
models, as described below. The first test considers the following null
hypothesis:

H0 : the linear specification is correct.

We generate the Pythonbiogeme file for this test as follows:

1



Model L(β̂) K
M1 leisure -1640.525 15
M1 leisure sq -1649.407 15
M1 leisure composite -1640.487 17

Table 1: Final log likelihood and number of parameters for the three models

Statistic Threshold Outcome

leisure vs. composite 0.076 5.99 Cannot reject M1 leisure

leisure sq vs. composite 17.84 5.99 Reject M1 leisure sq

Table 2: Likelihood ratio test between models

(a) Copy the file

v655 Boeing M1 leisure.py (from the edX webpage)

and rename it to v655 Boeing M1 leisure Jtest.py.

(b) Add to this file a parameter to be estimated, α.

(c) Copy the values of the estimated parameters from

v655 Boeing M1 leisure sq param.py (from the edX webpage),

that has been created by Pythonbiogeme. Do not give them the
same name, so that there is no conflict with the parameters that
are going to be estimated. For example, add quadratic to their
names.

(d) Make sure that these parameters are not re-estimated, either by
assigning their value to a Python variable:

B SM TIME LOG M3 = -1.47858

or, if you use the Beta statement, by setting the 5th arguments to
1 instead of 0:

B SM TIME LOG M3 =

Beta(’B SM TIME LOG M3’,-1.47858,-10,10,1 )

(e) Add to this file the utility functions from the quadratic specifica-
tion, and rename them, so that there is no conflict with the utility

2



functions that are already in the file. For example, add quadratic

to their names. Remember to use the renamed parameters.

(f) Write the expression of the utility functions by combining the
linear one, multiplied by (1−α) and the quadratic one, multiplied
by α.

You can find the Pythonbiogeme file created as explained above in

v655 Boeing M1 leisure Jtest.py (from the edX webpage).

The estimation results of the model used to test this are available in
the file

v655 Boeing M1 leisure Jtest.html (from the edX webpage).

Under H0, the true value of α is 0, so we can use a t-test. The t-statistic
for α is -0.23, which is smaller in absolute value than 1.96. Therefore we
cannot reject the null hypothesis that the linear specification is correct.

3. The second test considers the following null hypothesis:

H0 : the quadratic specification is correct.

The Pythonbiogeme file to test this can be generated analogously. It
is available here:

v655 Boeing M1 leisure sq Jtest.py (from the edX webpage)

The estimation results of the model used to test this hypothesis are
available in the file

v655 Boeing M1 leisure sq Jtest.html (from the edX webpage).

Under H0, the true value of α is 0, so we can again use a t-test. The
t-statistic for α is 3.89, which is larger than 1.96. Therefore the null
hypothesis that the quadratic specification is correct can be rejected.

Those two tests suggest to prefer the linear model M1 leisure. Note that
we reach here the same conclusion as by using a Cox test. It is not always
necessarily the case.
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Outlier analysis



Outlier analysis

Procedure

◮ Apply the model on the sample

◮ Examine observations where the predicted probability is the smallest for the
observed choice

◮ Test model sensitivity to outliers, as a small probability has a significant
impact on the log likelihood

◮ Potential causes of low probability:
◮ Coding or measurement error in the data
◮ Model misspecification
◮ Inexplicable variation in choice behavior



Coding or measurement error in the data

Look for signs of data errors

◮ Travel time is negative

◮ Number is coded as a string

◮ etc.

Correct or remove the observation

◮ Go back to the original survey

◮ Correct only if you are certain



Model misspecification

Improve the specification

◮ Seek clues of missing variables from the observation.

◮ Why is the model associating such a low probability for this choice?

◮ Did we forget to account for age, income, or any other variable ?

◮ Should a nonlinear specification be investigated?

◮ Use a behavioral intuition.



Inexplicable variation in choice behavior

Keep the observation

◮ If no acceptable explanation is found, keep the observation.

◮ Avoid overfitting of the model to the data.

◮ The model should reflect how people behave, not how they should behave.
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Out of sample validation



Cross-validation

Motivation

◮ Purpose of the model: prediction.

◮ Is the model able to predict?



Cross-validation

Motivation

◮ Purpose of the model: prediction.

◮ Is the model able to predict?



Cross-validation

Motivation

◮ Purpose of the model: prediction.

◮ Is the model able to predict?

80%

Estimation

20%

Validation



Methodology

Split the sample

◮ Decide the size of the validation set (e.g. 20%)

◮ Draw randomly an estimation set and a validation set.

◮ Repeat R times.

Evaluate

◮ For each pair of estimation/validation set...

◮ Estimate the parameters of the model with the estimation set.

◮ Calculate a measure of fit of the estimated model on the validation set.

◮ Typically, the likelihood.

◮ Calculate the average measure of fit.

◮ Select the model with the highest average fit on the validation sets.
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Goodness of fit measures

Various goodness of fit measures have been proposed in the literature to
perform the “out of sample” prediction test. However, we follow Diersen and
Manfredo (1998) and Norwood et al. (2001), and suggest to use the likelihood
of the validation set as the measure for comparing the quality of the models.
If in is the alternative chosen by individual n in the validation sample, the
log likelihood of the sample is

N∑

n=1

logP (in|xn), (1)

where xn is the vector of explanatory variables for individual n.
Another useful measure is the expected number of correctly predicted

observations:
N∑

n=1

P (in|xn). (2)

Note that this number is often incorrectly calculated by counting a success
when the chosen alternative is the one with the highest probability given by
the model. This should be avoided by all means.

References

Diersen, M. A. and Manfredo, M. R. (1998). Forecast evaluation: A likeli-
hood scoring method, Proceedings of the NCR-134 Conference on Ap-

plied Commodity Price Analysis, Forecasting, and Market Risk Manage-

ment, Chicago, IL.
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Norwood, B., Ferrier, P. and Lusk, J. (2001). Model selection criteria using
likelihood functions and out-of-sample performance, NCR-134 Confer-

ence on Applied Commodity Price Analysis, Forecasting, and Market

Risk Management, St. Louis, Missouri, April, pp. 23–24.
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Introduction to choice models



Aggregation



Motivation

◮ Prediction about a single individual is of
little use in practice.

◮ Need for indicators about aggregate
demand.

◮ Typical application: aggregate market
shares.



Aggregation

◮ Disaggregate model:
Pn(i |xn; θ)

◮ Obtain xn for each individual n in the population.

◮ Question: why is Cn omitted?



Aggregate market shares

Number of individuals choosing alternative i

NT (i) =

NT∑

n=1

Pn(i |xn; θ).

Share of the population choosing alternative i

W (i) =
1

NT

NT∑

n=1

P(i |xn; θ) = E [P(i |xn; θ)] .



Aggregation

Population
Alternatives

Total
1 2 · · · J

1 P(1|x1; θ) P(2|x1; θ) · · · P(J |x1; θ) 1
2 P(1|x2; θ) P(2|x2; θ) · · · P(J |x2; θ) 1
...

...
...

...
...

...
N P(1|xN ; θ) P(2|xN ; θ) · · · P(J |xN ; θ) 1

Total N(1) N(2) · · · N(J) N



Large table

When the table has too many rows...
apply sample enumeration.

When the table has too many columns...
apply micro simulation.
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Microsimulation



Microsimulation

Pn(1)
Pn(2)
Pn(3)
Pn(4)
Pn(5)
Pn(6)



Microsimulation

Simulated choice

◮ For each observation, draw R times from the choice model.

◮ Define ŷinr = 1 if alternative i has been generated by draw r , 0 otherwise.

◮ Approximation:

Pn(i |xn; θ) ≈
1

R

R∑

i=1

ŷinr .

Warning
It is invalid to select the alternative with the highest probability.



Aggregate market shares

Number of individuals choosing alternative i

N(i) =
1

R

N∑

n=1

R∑

i=1

ŷinr .

Share of the population choosing alternative i

N(i) =
1

N

1

R

N∑

n=1

R∑

i=1

ŷinr .



Microsimulation

For each r

Population
Alternatives

Total
1 2 · · · J

1 ŷ11r ŷ21r · · · ŷJ1r 1
2 ŷ12r ŷ22r · · · ŷJ2r 1
...

...
...

...
...

...
N ŷ1Nr ŷ2Nr · · · ŷJNr 1

Total N(1) N(2) · · · N(J) N



Microsimulation

In practice

Population
Draw

1 2 · · · R

1 i11 i12 · · · i1R

2 i21 i22 · · · i2R
...

...
...

...
...

N iN1 iN2 · · · iNR



Given a choice model P (i|xn) that has been estimated from data, the
predicted share of the population of N individuals choosing alternative i is
given by

W (i) =
1

N

N∑

n=1

P (i|xn; θ) = E [P (i|xn; θ)] . (1)

In practice, the population is often too large for the analyst to have access to
each xn vector, or even to their distribution. We introduce here a practical
method to estimate W (i) called sample enumeration.

The idea is to draw a sample from the population. It is actually possible
to use the same sample used for the estimation of the parameters, but only
if it consists of revealed preference data, that is data where the actual choice
has been observed. Stated preferences data, where respondents are exposed
to hypothetical scenarios, cannot be used for aggregation and prediction.

It is usually infeasible in practice to collect a purely random sample,
where each individual in the population has exactly the same probability to
be considered. A method called stratified random sampling is more realistic
to implement.

It consists in partitioning the population into G mutually exclusive and
collectively exhaustive groups, each called a stratum. This segmentation is
motivated by the logistic of the data collection, and by the objectives of the
survey. For instance, each stratum can be a geographical territory (a city,
a county, etc.), where a local coordinator can be assigned. Or the partition
can be organized by age, because we are interested in the impact of age on
the choice behavior, like in the simple example presented in the beginning of
the course.

Once the partitioning is defined, we sample Sg observations in each stra-
tum g, using simple random sampling. The total size of the sample is
S =

∑G

g=1
Sg.

Contrarily to simple random sampling, stratified sampling generates sam-
ples where some groups are proportionally more represented in the sample
than they are in the population. This has to be taken into account when
infering quantities related to the population from the same quantities calcu-
lated with the sample.

To do that, each group is associated with a weight:

ωg =
Ng

N

S

Sg

=
share of persons in segment g in the population

share persons in segment g in the sample
. (2)
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As each individual n belongs to exactly one stratum g, we define

ωn =
G∑

g=1

δngωg, (3)

where δng = 1 if individual n belongs to stratum g, and 0 otherwise.
Therefore, an estimate of the predicted share (1) of the population choos-

ing alternative i is given by

Ŵ (i) =
1

S

S∑

n=1

ωnP (i|xn; θ). (4)
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Michel Bierlaire

Description of the simulation file

Once a model has been estimated, it can be used to derive useful indi-
cators. PythonBiogeme provides a simulation feature for this purpose. In
this document, we summarize the procedure. Use it as a reference when you
work on the practice quiz.

We refer to the specification file .py containing all the instructions as the
simulation file. This file is generated as follows:

1. Consider a model estimation file (called model.py, say) that has been
already treated by Biogeme. In particular, the file model param.py has
been generated.

2. Generate a copy of model.py and rename it (called simul.py, say).

3. Replace all Beta statements by the equivalent statements including the
estimated values. These statements can be found in the file

model param.py

that is generated automatically when the parameters of the model are
estimated.

4. Copy and paste the code for the sensitivity analysis, which can also be
found in the file model param.py:

• the names of the parameters: the line starting with names=...

• the values of the variance-covariance matrix: the line starting with
values=...

1



• the definition of the matrix itself, for instance:
vc = bioMatrix(9,names,values)

BIOGEME OBJECT.VARCOVAR = vc

5. Make sure that the weight is properly defined by the statement
BIOGEME OBJECT.WEIGHT = ....

6. Replace the statement related to the estimation
BIOGEME OBJECT.ESTIMATE = Sum(l,’obsIter’)

by the statement for simulation:
BIOGEME OBJECT.SIMULATE = Enumerate(simulate,’obsIter’).

7. The simulate variable must be a dictionary describing what has to be
calculated during the sample enumeration. For example, if we want to
calculate the choice probability of each alternative of a binary choice
model for each individual in the sample, we define the simulate vari-
able as follows:

simulate = {’Prob. alt 1’: prob_1, ’Prob. alt 2’: prob_2},

where prob 1 and prob 2 have been defined with the appropriate for-
mulas. Each entry of this dictionary corresponds to an indicator that
must be calculated, that is composed of two element: a key and a for-
mula. The key of the entry is a string, that is used for the reporting.
The value must be a valid formula describing the calculation. In this
example, we define prob 1 and prob 2 as

prob_1 = bioLogit(V,av,1)

prob_2 = bioLogit(V,av,2)

which calculates the choice probability of each alternative as provided
by the logit model.

8. We note that the simulated indicators are reported in alphabetical or-
der. If a specific order is desired, the keys can be modified to do so.
For instance:

simulate = {’01 Prob.alt 2’: prob_2, ’02 Prob.alt 1’: prob_1}

The simulation is performed using the statement:
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pythonbiogeme simul dataset.dat

that generates the file simul.html including the following sections:

• The preamble reports information about the version of PythonBiogeme,
useful URLs and the names of the files involved in the run.

• Statistics: this section is the same as for the estimation, and reports
the requested statistics.

• The simulation report, which contains two parts: the detailed records

and the aggregate values.

– The detailed records is a table where each row corresponds to an
entry in the sample file, and each (group of) column(s) to an entry
in the dictionary defined by the statement

BIOGEME OBJECT.SIMULATE.

The group of columns contains the calculated indicator, as well as
the 90% confidence interval for this indicator, if requested. It is
calculated using simulation. As the estimates have been obtained
from maximum likelihood, they are (asymptotically) normally dis-
tributed. Therefore, Biogeme draws instance of the parameters
from a multivariate normal distribution N(β̂, Σ̂), where β̂ is the

vector of estimated parameters, and Σ̂ is the variance-covariance
matrix defined by the BIOGEME OBJECT.VARCOVAR statement. The
number of draws is controlled by the parameter:

NbrOfDrawsForSensitivityAnalysis.

The requested indicator is calculated for each realization, and the
5% and the 95% quantiles of the obtained simulated values are
reported to generate the 90% confidence interval. Note that the
confidence interval is reported only if the statement

BIOGEME OBJECT.VARCOVAR = vc

is present. If you do not need the confidence intervals, simply
remove this statement from the .py file.
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– The aggregate values section reports the aggregate indicators. De-
note by zn the value of the indicator calculated for individual n
(such as the probability that individual n chooses alternative 1,
for instance), and by wn the weight associated with individual n
to correct for sampling biases. Then, the following aggregate val-
ues are reported, together with the associated confidence interval
(if requested):

∗ Total:
Ns∑

n=1

zn. (1)

∗ Weighted total:
Ns∑

n=1

wnzn. (2)

∗ Average:

1

Ns

Ns∑

n=1

zn. (3)

∗ Weighted average:

1

Ns

Ns∑

n=1

wnzn. (4)

∗ Non zeros:
Ns∑

n=1

δ(zn 6= 0), (5)

where

δ(zn 6= 0) =

{
1 if zn 6= 0,
0 otherwise.

(6)

∗ Non zeros average:

∑Ns

n=1
zn∑Ns

n=1
δ(zn 6= 0)

. (7)

∗ Weighted non zeros average:

∑Ns

n=1
wnzn∑Ns

n=1
δ(zn 6= 0)

. (8)
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∗ Minimum:
min
n

zn. (9)

∗ Maximum:
max

n
zn. (10)
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Michel Bierlaire

Practice quiz

Consider the logit model included in v715 optima model.py (from the
edX webpage) for the Optima case study (optima.dat (from the edX web-
page)). The deterministic terms of the utility functions are defined as:

VPT = βTIME FULLTIME · TimePT scaled · fulltime +

βTIME OTHER · TimePT scaled · notfulltime

βCOST · MarginalCostPT scaled

VCAR = ASCCAR + βTIME FULLTIME · TimeCar scaled · fulltime +

βTIME OTHER · TimeCar scaled · notfulltime +

βCOST · CostCarCHF scaled

VSM = ASCSM + βDIST MALE · distance km scaled · male +

βDIST FEMALE · distance km scaled · female +

βDIST UNREPORTED · distance km scaled · unreportedGender

whereASCCAR, ASCSM , βTIME FULLTIME, βTIME OTHER, βDIST MALE, βDIST FEMALE

and βDIST UNREPORTED are parameters, TimePT scaled, MarginalCostPT scaled,
TimeCar scaled, CostCarCHF scaled and distance km scaled are the scaled
variables of the corresponding variables in the dataset, and fulltime, notfull-
time, male, female and unreportedGender are socio-economic characteristics.

Calculate the predicted market shares for this model with stratified ran-
dom sampling for the three alternatives (public transportation, car and soft
modes) in PythonBiogeme.

Hints

• The sum of the weights has to be computed for normalization purposes.
To do so, the following instruction has been included in v715 optima model.py:

1



BIOGEME OBJECT.STATISTICS[’Sum of weights’] =

Sum(Weight,’obsIter’).

The result is reported in the .html file generated after running Python-
Biogeme on v715 optima model.py (from the edX webpage).

• Check the sample size on the generated .html file. Note that it is
not equivalent to the number of entries in the dataset because we are
excluding the observations that satisfy certain conditions.

• A new variable (theWeight) needs to be defined in order to normalize
the existing weights (Weight). The normalized weights are calculated
by multiplying the original weights by the sample size (xxxx) and di-
viding them by the total sum of weights (yyyy):

theWeight = Weight * xxxx/yyyy

BIOGEME_OBJECT.WEIGHT = theWeight

• The probability statements have to be defined in the simulation file for
each alternative, and the log likelihood does not need to be calculated,
that is, you can replace l = bioLogLogit(V,av,Choice) in the sim-
ulation file by statements of the form prob PT = bioLogit(V,av,0)

(this is for the public transportation alternative).
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Michel Bierlaire

Solution of the practice quiz

Note that the weights had to be normalized because their sum has to be
equal to the sample size. The output of the model estimation is available
in the file v715 optima model.html (from the edX webpage), where it is
reported that the sum of weights is 0.804451 and the sample size is 1899.
Therefore, we include the following statements in the simulation file:

theWeight = Weight * 1899/0.804451

BIOGEME_OBJECT.WEIGHT = theWeight

The complete simulation file is available here: v715 optima simul.py

(from the edX webpage). It contains all the instructions to perform the
simulation. This file is run as usual in PythonBiogeme and generates all the
quantities that have been specified in the simulate variable. The output file
is v715 optima simul.html (from the edX webpage).

The market shares we are interested in can be found in the row “Weighted
average”:

• Public transportation: 28.70%

• Car: 65.22%

• Soft modes: 6.082%
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Forecasting – 7.2 Forecasting and confidence

intervals

Michel Bierlaire

Practice quiz: forecasting

Consider the logit model specificed in the file v715 optima model.py

(from the edX webpage) for the Optima case study (optima.dat (from the
edX webpage)). The deterministic parts of the utility functions are defined
as:

VPT = βTIME FULLTIME · TimePT scaled · fulltime +

βTIME OTHER · TimePT scaled · notfulltime

βCOST ·MarginalCostPT scaled

VCAR = ASCCAR + βTIME FULLTIME · TimeCar scaled · fulltime +

βTIME OTHER · TimeCar scaled · notfulltime +

βCOST · CostCarCHF scaled

VSM = ASCSM + βDIST MALE · distance km scaled ·male +

βDIST FEMALE · distance km scaled · female +

βDIST UNREPORTED · distance km scaled · unreportedGender

whereASCCAR, ASCSM , βTIME FULLTIME, βTIME OTHER, βDIST MALE, βDIST FEMALE

and βDIST UNREPORTED are parameters, TimePT scaled, MarginalCostPT scaled,
TimeCar scaled, CostCarCHF scaled and distance km scaled are the scaled
variables of the corresponding variables in the dataset, and fulltime, notfull-
time, male, female and unreportedGender are socio-economic characteristics.

Test the effect of the increase in the gas cost by forecasting the market
shares of the different alternatives with stratified random sampling. To do
so, complete the following table:
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Increase in the gas cost
5% 10% 15% 20% 25% 30%

Public transportation
Car

Soft modes

Hints

• Consider the simulation file from the previous practice quiz v715 optima simul.py

(from the edX webpage).

• Define a new variable capturing the increase of the gas cost (before
the utility statements). For instance, for a 5% increase, it is defined in
Pythonbiogeme as

CostCarCHF scaled increased = DefineVariable

(’CostCarCHF scaled increased’,CostCarCHF scaled*1.05),

where CostCarCHF scaled is the scaled variable for the original gas
cost variable.

• Replace the scaled gas cost variable by the new variable wherever it
appears in the utility statements.

• Run the resulting file as usual. You should name the file associated
with each scenario differently. For instance, for a 5% increase it can be
named v721 optima increase 05.py.
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Forecasting – 7.2 Forecasting and confidence

intervals

Michel Bierlaire

Solution of the practice quiz: forecasting

The specification files and the output files for each of the different sce-
narios are :

5% v721 optima increase 05.py (from the edX webpage)
v721 optima increase 05.html (from the edX webpage)

10% v721 optima increase 10.py (from the edX webpage)
v721 optima increase 10.html (from the edX webpage)

15% v721 optima increase 15.py (from the edX webpage)
v721 optima increase 15.html (from the edX webpage)

20% v721 optima increase 20.py (from the edX webpage)
v721 optima increase 20.html (from the edX webpage)

25% v721 optima increase 25.py (from the edX webpage)
v721 optima increase 25.html (from the edX webpage)

30% v721 optima increase 30.py (from the edX webpage)
v721 optima increase 30.html (from the edX webpage)

The market shares in each output file can be found in the table “Aggregate
values”, in row “Weighted average”. They are reported in the following table.

Increase in the gas cost
5% 10% 15% 20% 25% 30%

Public transportation 29.00% 29.30% 29.60% 29.90% 30.20% 30.50%
Car 64.91% 64.59% 64.28% 63.97% 63.65% 63.32%

Soft modes 6.096% 6.110% 6.125% 6.139% 6.153% 6.167%
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Forecasting – 7.2 Forecasting and confidence

intervals

Michel Bierlaire

Practice quiz: confidence intervals

Consider the logit model specified in v715 optima model.py (from the
edX webpage) for the Optima case study (data file: optima.dat (from the
edX webpage)). The deterministic terms of the utility functions are defined
as:

VPT = βTIME FULLTIME · TimePT scaled · fulltime +

βTIME OTHER · TimePT scaled · notfulltime

βCOST ·MarginalCostPT scaled

VCAR = ASCCAR + βTIME FULLTIME · TimeCar scaled · fulltime +

βTIME OTHER · TimeCar scaled · notfulltime +

βCOST · CostCarCHF scaled

VSM = ASCSM + βDIST MALE · distance km scaled ·male +

βDIST FEMALE · distance km scaled · female +

βDIST UNREPORTED · distance km scaled · unreportedGender

whereASCCAR, ASCSM , βTIME FULLTIME, βTIME OTHER, βDIST MALE, βDIST FEMALE

and βDIST UNREPORTED are parameters, TimePT scaled, MarginalCostPT scaled,
TimeCar scaled, CostCarCHF scaled and distance km scaled are the scaled
variables of the corresponding variables in the dataset, and fulltime, notfull-
time, male, female and unreportedGender are socio-economic characteristics.

Obtain the 90% confidence intervals of the predicted market shares (with
stratified random sampling) for the scenarios of increase of the gas cost con-
sidered in the previous practice quiz, i.e., 5%, 10%, 15%, 20%, 25% and 30%.
For each alternative and each scenario, provide the 90% confidence interval.
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Hints

• Consider the files v721 optima increase XX.py (where XX is the in-
crease in the gas cost) from the previous quiz.

• The following statements of the code for the sensitivity analysis are
necessary here:
vc = bioMatrix(8,names,values)

BIOGEME OBJECT.VARCOVAR = vc
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Forecasting – 7.2 Forecasting and confidence

intervals

Michel Bierlaire

Solution of the practice quiz: confidence intervals

We need to uncomment the statements that were commented out in the
previous quizzes:

vc = bioMatrix(27,names,values)

BIOGEME_OBJECT.VARCOVAR = vc

For each file from the previous quiz we have included these statements
in order to report the 5% and the 95% quantile of the obtained simulated
values, which generate the 90% confidence interval. The .py files have been
called as follows:

• 5%: v721 optima increase 05 ci.py (from the edX webpage)

• 10%: v721 optima increase 10 ci.py (from the edX webpage)

• 15%: v721 optima increase 15 ci.py (from the edX webpage)

• 20%: v721 optima increase 20 ci.py (from the edX webpage)

• 25%: v721 optima increase 25 ci.py (from the edX webpage)

• 30%: v721 optima increase 30 ci.py (from the edX webpage)

The confidence intervals for each alternative are the following:

Public transportation:

• 5%: [25.32%, 32.64%]
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• 10%: [25.59%, 32.95%]

• 15%: [25.86%, 33.26%]

• 20%: [26.12%, 33.57%]

• 25%: [26.39%, 33.89%]

• 30%: [26.65%, 34.21%]

Car:

• 5%: [60.24%, 68.69%]

• 10%: [59.91%, 68.41%]

• 15%: [59.59%, 68.12%]

• 20%: [59.26%, 67.84%]

• 25%: [58.93%, 67.56%]

• 30%: [58.60%, 67.27%]

Soft modes:

• 5%: [4.336%, 9.442%]

• 10%: [4.344%, 9.469%]

• 15%: [4.353%, 9.496%]

• 20%: [4.361%, 9.523%]

• 25%: [4.367%, 9.551%]

• 30%: [4.378%, 9.578%]
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Willingness to pay and value of time

If the model contains a cost or price variable, it is possible to analyze the
trade-off between any variable and money. It reflects the willingness of the
decision maker to pay for a modification of another variable of the model.

A typical example in transportation is the value of time, that is the price
that a traveler is willing to pay to decrease the travel time.

• Let cin be the cost of alternative i for individual n.

• Let xin be the value of another variable of the model.

• Let Vin(cin, xin) be the value of the utility function associated by indi-
vidual n with alternative i.

• Consider a scenario where the variable under interest takes the value
xin + δxin.

• We denote by δcin the additional cost that would achieve the same utility,
that is

Vin(cin + δcin, xin + δxin) = Vin(cin, xin). (1)

The willingness to pay is the additional cost per unit of x, that is

δcin/δ
x
in. (2)

Its calculation involves solving equation (1).
If the variable xin is continuous, and if Vin is differentiable in xin and cin,

we can invoke Taylor’s theorem

Vin(cin, xin) = Vin(cin + δcin, xin + δxin)

≈ Vin(cin, xin) + δcin
∂Vin

∂cin
(cin, xin) + δxin

∂Vin

∂xin

(cin, xin)
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to obtain
δcin
δxin

= −
(∂Vin/∂xin)(cin, xin)

(∂Vin/∂cin)(cin, xin)
. (3)

If xin and cin appear linearly in the utility function, that is if

Vin(cin, xin) = βccin + βxxin + · · · (4)

then the willingness to pay involves the ratio of the coefficients:

δcin
δxin

= −
(∂Vin/∂xin)(cin, xin)

(∂Vin/∂cin)(cin, xin)
= −

βx

βc

. (5)

The above equation is the willingness to pay for an increase of the value of
the variable xin. If this increase improves the utility of the alternative, then
βx > 0. As βc < 0, the willingness to pay is positive. In the context of value
of time, we want to calculate the willingness to pay to decrease the travel
time. Therefore, we have

VOTin = δcin/(−δtin) =
(∂Vin/∂tin)(cin, tin)

(∂Vin/∂cin)(cin, tin)
. (6)

If V is linear in these variables, we have

VOTin = δcin/(−δtin) =
βt

βc

. (7)

The willingness to pay is negative when a decrease of the cost compensates
a modification of another variable that decreases the utility. In this case, it
is sometimes called willingness to accept.

The above derivation, based on converting trade-offs into monetary units,
is the most common one. Similar quantities can be derived by using other
variables than cost as the reference.
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Willingness to pay and value of time: practice quiz

Consider the following utility function corresponding to the public trans-
portation alternative i in a mode choice context:

Vin = −0.0704 TCin − 0.0117 TTin − 0.0594 Transfersin (1)

where

• TCin is the travel cost for individual n,

• TTin is the travel time for individual n,

• Transfersin is the number of transfers for individual n.

Consider an individual n confronted with the following values:

• TCin = 12.4 CHF,

• TTin 85 minutes,

• Transfersin = 2.

What is the value of time for this individual?

1. Correct: -0.0117 / -0.0704 = 0.166 CHF/min

2. 6.02 CHF/min

3. 14.6 CHF/min

4. 6.85 CHF/min
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Practice quiz

Consider the logit model included in v715 optima model.py (from the
edX webpage) for the Optima case study (dataset: optima.dat (from the
edX webpage)). The deterministic terms of the utility functions are defined
as:

VPT = βTIME FULLTIME · TimePT scaled · fulltime +

βTIME OTHER · TimePT scaled · notfulltime

βCOST · MarginalCostPT scaled

VCAR = ASCCAR + βTIME FULLTIME · TimeCar scaled · fulltime +

βTIME OTHER · TimeCar scaled · notfulltime +

βCOST · CostCarCHF scaled

VSM = ASCSM + βDIST MALE · distance km scaled · male +

βDIST FEMALE · distance km scaled · female +

βDIST UNREPORTED · distance km scaled · unreportedGender

whereASCCAR, ASCSM , βTIME FULLTIME, βTIME OTHER, βDIST MALE, βDIST FEMALE

and βDIST UNREPORTED are parameters, TimePT scaled, MarginalCostPT scaled,
TimeCar scaled, CostCarCHF scaled and distance km scaled are the scaled
variables of the corresponding variables in the dataset, and fulltime, notfull-
time, male, female and unreportedGender are socio-economic characteristics.

Perform the following tasks:

1. Calculate for each individual in the sample the value of time for public
transportation and for car in CHF/hour;

2. Provide an estimate of the average value of time in the population;

3. Analyze the distribution of the value of time in the sample.
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Hints

• The value of time is calculated as

VOTin =
(∂Vin/∂tin)(cin, tin)

(∂Vin/∂cin)(cin, tin)
, (1)

where cin and tin are the cost and travel time of alternative i and indi-
vidual n, respectively. In PythonBiogeme, the calculation of derivatives
is written as follows (example for public transportation):

VOT_PT = Derive(V_PT,’TimePT’)/Derive(V_PT,’MarginalCostPT’)

We can add these statements to the simulation file v715 optima simul.py

(from the edX webpage).

• The DefineVariable operator is designed to preprocess the data file,
and can be seen as a way to add another column in the data file,
defining a new variable. However, when used, the functional relation-
ship between the new variable and the original one is lost. Therefore,
PythonBiogeme is not able to properly calculate the derivatives. For
instance, one of the variable of interest is TimePT, not TimePT scaled,
and their relationship must be explicitly known to correctly calculate
the derivatives. Consequently, all statements such as
TimePT scaled = DefineVariable(’TimePT scaled’, TimePT/200)

should be replaced by statements such as
TimePT scaled = TimePT/200

in order to maintain the analytical structure of the formula to be de-
rived.

• In order to analyze the distribution of the value of time in the sample,
identify the socioeconomic characteristic(s) that play(s) a role in the
calculation of the value of time and report its value together with the
value of time.
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Solution of the practice quiz

1. The file v735 optima VOT01.py (from the edX webpage) has been de-
fined from the simulation file v715 optima simul.py (from the edX
webpage) by adding the following statements:
VOT PT = Derive(V PT,’TimePT’)/Derive(V PT,’MarginalCostPT’)

VOT CAR = Derive(V CAR,’TimeCar’)/Derive(V CAR,’CostCarCHF’)

In order to get the value of time in CHF/hour, we can easily convert
the original values by multiplying them by 60. We can include this
formula directly in the simulate variable:
simulate = {’01 PT: Value of time (CHF/h)’: 60*VOT PT, ’02

Car: Value of time (CHF/h)’: 60*VOT CAR}

The results can be found in v735 optima VOT01.html (from the edX
webpage).

2. The estimate of the average value of time in the population is obtained
from the weighted average of the sample. The aggregate values are
found in the “Weighted average” row of the report file. The estimate
of the value of time is equal to

3.59CHF/hour,

with a confidence interval of

[1.66,6.66].

Note that this value is abnormally low, which is a sign of a potential
poor specification of the model. Note also that, with this specification,
the value of time is the same for car and public transportation, as the
coefficients of the time and cost variables are generic.
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3. It is important to look at the distribution of the willingness to pay in
the population/sample. The detailed records of the report file allow
to do so. It is easy to drag and drop the .html file into your favorite
spreadsheet software in order to perform additional statistics. In this
example, the value of time takes two values, depending on the employ-
ment status of the individual.

The file v735 optima VOT01.py (from the edX webpage) has been adapted
to account for the employment status. The resulting file, v735 optima VOT02.py

(from the edX webpage), contains an additional instruction in the
simulate variable to report if the employment status is full time or
not:
simulate = {’01 PT: Value of time (CHF/h)’: 60*VOT PT, ’02

Car: Value of time (CHF/h)’: 60*VOT CAR, ’03 Full time’:

fulltime}

The output is available in v735 optima VOT02.html (from the edX
webpage). One can easily identify the value of time for full time em-
ployees (fulltime = 1) and for not full time employees (fulltime =
0) by looking at the corresponding rows on the resulting .html file:

• Full time: 6.37 CHF/hour (confidence interval: [4.02, 10.08])

• Not full time: 2.00 CHF/hour (confidence interval: [0.32, 4.70]).

Even though the values are still low, the obtained results are as ex-
pected in the sense that the value of time for full time employees is
higher, that is, full-time employees are willing to pay more to save 1
hour of transportation than part-time employees.
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Practice quiz: elasticities

Consider the logit model included in v715 optima model.py (from the
edX webpage) for the Optima case study (dataset: optima.dat (from the
edX webpage)). The deterministic terms of the utility functions are defined
as:

VPT = βTIME FULLTIME · TimePT scaled · fulltime +

βTIME OTHER · TimePT scaled · notfulltime

βCOST ·MarginalCostPT scaled

VCAR = ASCCAR + βTIME FULLTIME · TimeCar scaled · fulltime +

βTIME OTHER · TimeCar scaled · notfulltime +

βCOST · CostCarCHF scaled

VSM = ASCSM + βDIST MALE · distance km scaled ·male +

βDIST FEMALE · distance km scaled · female +

βDIST UNREPORTED · distance km scaled · unreportedGender

whereASCCAR, ASCSM , βTIME FULLTIME, βTIME OTHER, βDIST MALE, βDIST FEMALE

and βDIST UNREPORTED are parameters, TimePT scaled, MarginalCostPT scaled,
TimeCar scaled, CostCarCHF scaled and distance km scaled are the scaled
variables of the corresponding variables in the dataset, and fulltime, notfull-
time, male, female and unreportedGender are socio-economic characteristics.

Calculate the following indicators:

1. Estimate of the aggregate direct point elasticities for the population:

(a) Elasticity of the share of public transportation with respect to
travel time by public transportation.
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(b) Elasticity of the share of public transportation with respect to
marginal cost of public transportation.

(c) Elasticity of the share of car with respect to travel time of car.

(d) Elasticity of the share of car with respect to cost of car.

(e) Elasticity of the share of slow modes with respect to the trip
length.

2. Estimate of the aggregate cross point elasticities for the population:

(a) Elasticity of the share of public transportation with respect to the
travel time by car.

(b) Elasticity of the share of public transportation with respect to the
cost of car.

(c) Elasticity of the share of car with respect to the travel time by
public transportation.

(d) Elasticity of the share of car with respect to the marginal cost of
public transportation.

Hints

• Since the aggregate point elasticities are obtained by aggregating the
disaggregate elasticities, the normalization factors need to be calcu-
lated. To do so, we include the following statements to the simulation
file v715 optima simul.py and run the resulting file:
BIOGEME OBJECT.STATISTICS[’Normalization for elasticities PT’]

= Sum(theWeight * prob PT ,’obsIter’)

BIOGEME OBJECT.STATISTICS[’Normalization for elasticities CAR’]

= Sum(theWeight * prob CAR ,’obsIter’)

BIOGEME OBJECT.STATISTICS[’Normalization for elasticities SM’]

= Sum(theWeight * prob SM ,’obsIter’)

• A simulation file with the statements for the aggregate elasticities of
interest has to be created. For instance, if we want to calculate the
aggregate elasticity of the choice of public transport with respect to its
travel time, the following instructions need to be included:
normalization pt = ...

elas pt time = Derive(prob PT,’TimePT’) * TimePT / prob PT

2



’Agg. Elast. PT - Time’: elas pt time * prob PT / normalization pt

where the first statement corresponds to the normalization factor, the
second statement calculates the disaggregate elasticity of the choice of
public transportation with respect to its marginal cost and the third
statement is the entry to the simulation dictionary that is designed to
calculate the aggregate elasticties.

• Note that the weights have not been included in the formula for the
aggregate elasticity, so that the values of the aggregate elasticities can
be found in the row “Weighted total” of the generated .html file.
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Forecasting – 7.3 Indicators

Michel Bierlaire

Solution of the practice quiz: elasticities

The file v736 optima elasticities01.py (from the edX webpage) has
been defined from the v715 optima simul.py (from the edX webpage) by
adding the following statements in order to obtain the normalization factors:
BIOGEME OBJECT.STATISTICS[’Normalization for elasticities PT’] =

Sum(theWeight * prob PT ,’obsIter’)

BIOGEME OBJECT.STATISTICS[’Normalization for elasticities CAR’] =

Sum(theWeight * prob CAR ,’obsIter’)

BIOGEME OBJECT.STATISTICS[’Normalization for elasticities SM’] =

Sum(theWeight * prob SM ,’obsIter’)

The values are found in the output file v736 optima elasticities01.html

(from the edX webpage):

• Public transportation: 545.061,

• Car: 1238.44,

• Slow modes: 115.504.

1. We then create a new file v736 optima elasticities02.py (from the
edX webpage) that contains the normalization factors, the disaggregate
elasticities that need to be aggregated and the resulting aggregate elas-
ticities. The values are found in the output file v736 optima elasticities02.html

(from the edX webpage):

(a) Agg. Elast. PT - Time PT = -0.2412,

(b) Agg. Elast. PT - Cost PT = -0.3131,

(c) Agg. Elast. Car - Time Car = -0.4147,

(d) Agg. Elast. Car - Time Car = -0.0948,

1



(e) Agg. Elast. SM - Distance SM = -1.017.

2. We replace the previous direct elasticities’ instructions by the corre-
sponding cross ones in the file v736 optima elasticities03.py (from
the edX webpage) and proceed in the same way as before. The values
are found in the output file v736 optima elasticities03.html (from
the edX webpage):

(a) Agg. Elast. PT - Time car: 0.0885,

(b) Agg. Elast. PT - Cost car: 0.2056,

(c) Agg. Elast. Car - Time PT: 0.1018,

(d) Agg. Elast. Car - Cost PT: 0.1314.

2



Forecasting – 7.3 Indicators

Michel Bierlaire

Consumer surplus

The consumer surplus is the difference between what a consumer is willing
to pay for a good and what she actually pays for the good. If the reader
is not familiar with the concept of consumer surplus, we suggest to read
a primer on the topic in a text book on microeconomics, such as Nicholson
and Snyder (2007). The change in consumer surplus is often used to evaluate
public policy decisions. For example, the impact on consumers of changing
emissions regulations or increasing investments in the public transit system.

It is equal to the area under the demand curve and above the market
price. In classical microeconomics, the demand curve gives the price of a
good as a function of the quantity consumed. In discrete choice, the demand
for individual n is characterized by the choice probability. Also, the role of
price is taken by the utility of the good. In Figure 1 the choice probability
is represented on the x-axis, and the y-axis represents the negative utility
of alternative i, −V

i
. The minus sign helps in obtaining the same inter-

pretation as in classical microeconomic: going up the axis corresponds to a
deterioration.

Simulating a future increase of the utility of item i (that is, a decrease
of the quantity −V

i
), while the utility of other alternatives is constant, the

change in consumer surplus is represented by the filled area. For binary logit,
this area can be calculated by the following integral, where the index n has
been dropped to simplify the notations:

∫
V

2

i

V
1

i

P (i|V
i
, V

j
)dV

i
=

∫
V

2

i

V
1

i

eµVi

eµVi + eµVj

dV
i

(1)

which is
1

µ
ln(eµV

2

i + eµVj)−
1

µ
ln(eµV

1

i + eµVj). (2)
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P
n
(i)

Future
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Figure 1: Illustration of the consumer surplus for binary logit
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To generalize this result, we calculate the difference in an individual’s con-
sumer surplus between two situations corresponding to vectors of systematic
utilities V 1 and V 2 as follows:

∑

i∈C

∫
V

2

V
1

P (i|V )dV
i
, (3)

where the choice probability is denoted as conditional on the vector V of
systematic utilities in order to make the dependency explicit. Note that the
term P (i|V )dV

i
corresponds to the filled area in Figure 1 where the change

in the utility of i is infinitesimal. The difficulty here is that the utility of
all alternatives are modified. Therefore, the integral in (3) is a line integral.
And there are infinitely many ways to move from utility vector V 1 to utility
vector V 2 in the J-dimensional space. This is illustrated for an example with
two alternatives in Figures 2 and 3. In order to simplify the calculation of
the integral, we consider paths that are updating each coordinate at a time.
In Figure 2, the path moves first from V 1 = (V 1

i
, V 1

j
) to (V 2

i
, V 1

j
), and then

from (V 2

i
, V 1

j
) to (V 2

i
, V 2

j
) = V 2. The path in Figure 3 moves first from

V 1 = (V 1

i
, V 1

j
) to (V 1

i
, V 2

j
), and then from (V 1

i
, V 2

j
) to (V 2

i
, V 2

j
) = V 2.

V
i

V
j

V 1

j

V 2

j

V 1

i
V 2

i

•
V 1

V 2

•

Figure 2: Moving from utility vector V1 to utility vector V2: first path

For the example with two alternatives, where the path in Figure 2 is
followed, the integral (3) is

∫
V

2

i

V
1

i

P (i|V
i
, V 1

j
)dV

i
+

∫
V

2

j

V
1

j

P (j|V 2

i
, V

j
)dV

j
. (4)
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Figure 3: Moving from utility vector V1 to utility vector V2: second path

Assuming now a binary logit model, the first integral is

∫
V

2

i

V
1

i

eµVi

eµVi + eµV
1

j

dV
i
. (5)

Let t = eµVi + eµV
1

j so that dt = µeµVidV
i
, we obtain

1

µ

∫
e
µV

2
i +e

µV
1
j

e
µV 1

i +e

µV 1
j

dt

t
=

1

µ
ln(eµV

2

i + eµV
1

j )−
1

µ
ln(eµV

1

i + eµV
1

j ). (6)

The second integral is ∫
V

2

j

V
1

j

eµVj

eµV
2

i + eµVj

dV
j
. (7)

Let t = eµV
2

i + eµVj so that dt = µeµVjdV
j
, we obtain

1

µ

∫
e
µV

2
i +e

µV
2
j

e
µV 2

i +e

µV 1
j

dt

t
=

1

µ
ln(eµV

2

i + eµV
2

j )− ln(eµV
2

i + eµV
1

j ). (8)

Adding (6) and (8), we obtain the difference of logsum, that is

1

µ
ln(eµV

2

i + eµV
2

j )−
1

µ
ln(eµV

1

i + eµV
1

j ). (9)

Calculating the integral following the path described in Figure 3 leads to
the exact same result. We say that the calculation of the integral is path
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independent. Not all line integrals are path independent. If the choice model
happens to have equal cross-derivatives, that is

∂P (i|V, C)

∂V
j

=
∂P (j|V, C)

∂V
i

, ∀i, j ∈ C, (10)

the calculation of the integral in (3) is path independent.
The logit model, as well as several choice models used in practice, have

this property. Therefore, for logit, we can select the path of integration. We
calculate (3) using a path that first updates the utility of alternative 1, then
of alternative 2, and so on until J . The kth term integrates over V

k
, with

all utilities of alternatives 1 to k − 1 set at the level V 2, while all utilities of
alternatives k + 1 to J are set at the level V 1. This term writes

∫
V

2

k

V
1

k

eµVk

∑
k−1

j=1
eµV

2

j + eµVk +
∑

J

j=k+1
eµV

1

j

dV
k
=

1

µ
ln

(
k−1∑

j=1

eµV
2

j + eµV
2

k +
J∑

j=k+1

eµV
1

j

)
−
1

µ
ln

(
k−1∑

j=1

eµV
2

j + eµV
1

k +
J∑

j=k+1

eµV
1

j

)
.

(11)

When summing up over k, most terms of the sum over alternatives cancel
out, and the difference of consumer surplus for the logit model is

1

µ
ln
∑

j∈C

eµV
2

j −
1

µ
ln
∑

j∈C

eµV
1

j . (12)

which is the difference among expected maximum utilities in the two situa-
tions. When the choice set changes from C1 to C2, the result of (3) is

1

µ
ln
∑

j∈C
2

eµV
2

j −
1

µ
ln
∑

j∈C
1

eµV
1

j . (13)

We refer the reader to Neuburger (1971), Small and Rosen (1981), Hane-
mann (1984), McConnell (1995), Dagsvik and Karlström (2005) for more
detailed discussions about consumer surplus.
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Forecasting – 7.3 Indicators

Michel Bierlaire

Practice quiz: consumer surplus

Consider the following logit model for the Optima case study. The deter-
ministic terms of the utility functions are defined as:

VPT = βTIME · TimePT + βCOST ·MarginalCostPT

VCAR = ASCCAR + βTIME · TimeCar + βCOST · CostCarCHF

VSM = ASCSM + βDIST · distance km

whereASCCAR, ASCSM , βTIME, βCOST and βDIST are parameters; and TimePT,
MarginalCostPT, TimeCar, CostCarCHF and distance km are variables in
the dataset. The parameter estimates are included in Table 1.

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 ASCCAR 0.301 0.102 2.96 0.00
2 ASCSM -0.0337 0.296 -0.11 0.91
3 βCOST -0.0753 0.0139 -5.43 0.00
4 βDIST -0.198 0.0491 -4.03 0.00
5 βTIME -0.00478 0.00144 -3.31 0.00

Table 1: Estimates of the parameters

The public authorities are planning to do some investments in a train
line in order to make public transportation more attractive. The population
concerned by the train line is facing the following alternatives:

• PT: MarginalCostPT = 3.5 CHF, TimePT = 25 min.,

1



• Car: CostCarCHF = 7.5 CHF, TimeCar = 10 min., and

• SM: distance km = 15 km.

Three different scenarios are considered by the authorities to improve the
attractiveness of the train line:

1. decreasing its cost by 5%,

2. decreasing its travel time by 5 minutes,

3. decreasing its travel time by 10 minutes, while increasing its cost by
10%.

In order to decide the best scenario for the sake of the travelers, the
increase in consumer surplus must be calculated for each scenario.

1. Calculate the consumer surplus of each traveler for the three scenarios
in utility units.

2. What scenario increases the most the welfare of the travelers?

3. Calculate the consumer surplus of each traveler for the three scenarios
in CHF.

Hint: Use a spreadsheet or statistical software to perform the calcula-
tions.
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Forecasting – 7.3 Indicators

Michel Bierlaire

Solution of the practice quiz: consumer surplus

In order to calculate the consumer surplus we need to compute the deter-
ministic terms of the utility functions for the present and the future scenarios
before and after the decreased attribute(s) for each scenario. The results are
included in the following table:

Scenario 1 Scenario 2 Scenario 3
Alt. V before V after V before V after V before V after

PT -0.3831 -0.3699 -0.3831 -0.3592 -0.3831 -0.3616
Car -0.3116 -0.3116 -0.3116 -0.3116 -0.3116 -0.3116
SM -3.004 -3.004 -3.004 -3.004 -3.004 -3.004

Note that the deterministic terms of the utility for car and SM remain
unchanged.

The consumer surplus of each scenario for the population of interest is
then computed as follows (note that µ has been normalized to 1):

ln(eV
after

PT + eV
after

Car + eV
after

SM )− ln(eV
before

PT + eV
before

Car + eV
before

SM ).

1. The difference of consumer surplus in terms of utility units:

(a) Cost decrease scenario: 0.3871−0.3810 = 0.006160 utility units.

(b) Time decrease scenario: 0.3922−0.3810 = 0.01120 utility units.

(c) Time decrease and cost increase scenario: 0.3910−0.3810 = 0.01005
utility units.

2. The scenario increasing the most the consumer surplus is the time
decrease scenario.
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3. The difference of consumer surplus in terms of monetary units is ob-
tained by dividing the above quantities by the cost coefficient:

(a) Cost decrease scenario:

0.006160/− 0.0753 = −0.082.

Therefore, the consumer surplus of each traveler increases by 8.2
cents. It is interesting to compare this value with the amount of
the cost decrease, that is 17.5 cents.

(b) Time decrease scenario:

0.01120/− 0.0753 = −0.149.

Therefore, the consumer surplus of each traveler increases by 14.9
cents.

(c) Time decrease and cost increase scenario:

0.01005/− 0.0753 = −0.133.

Therefore, the consumer surplus of each traveler increases by 13.3
cents.
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Forecasting
Revenue maximization

Michel Bierlaire

Introduction to choice models



Revenue maximization



Revenue

Supplier i

◮ Consider the supplier of alternative i in the market.

◮ The price offered to individual n is pin.

◮ The expected revenue generated by individual n is

pinP(i |xn, pin; θ)

◮ The total expected revenue is therefore

N∑

n=1

pinP(i |xn, pin; θ)



Revenue maximization

Solve the problem

max
pi1,...,pi

N

N∑

n=1

pinP(i |xn, pin; θ)

Notes

◮ In practice, prices are often the same for the population, of for large groups.

◮ It assumes that the rest of the market is not affected.

◮ In practice, it is likely that the competition will also adjust the prices



Illustrative example

Binary logit model

Vin = βpnpin − 0.5
Vjn = βpnpjn

so that

Pn(i |pin, pjn) =
e
βpnpin−0.5

eβpnpin−0.5 + eβppjn

Two groups in the population

◮ Group 1: βpn = −2, N1 = 600

◮ Group 2: βpn = −0.1, N2 = 400

Assume that pjn = 2, ∀n.



Illustrative example
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Forecasting – 7.4 Revenue maximization

Michel Bierlaire

Practice quiz: revenue maximization

Consider the binary logit model described in the previous video, where
the utility of the two competing alternatives i and j are defined as

Vin = βpnpi − 0.5,

Vjn = βpnpj,

where pi and pj are the prices of each alternative, and βpn is the price coef-
ficient for individual n. Assume that you are in control of alternative i, and
have to decide its price. We also assume that the price for the competing
alternative j is fixed: pj = 2. Note that the absence of an index n on the
price variable indicates that the prices are the same for each individual.

The population, composed of 1000 individuals, is heterogeneous in its
preferences, and composed of three groups. For each group, the value of the
price coefficient βpn and the number of individuals have been determined to
be:

1. βpn = −1, N1 = 300,

2. βpn = −0.5, N2 = 300, and

3. βpn = −0.1, N3 = 400.

The price levels that can be considered for pi are {1, 3, 5, 7, 9, 11, 13}.
Answer the following questions:

1. What is the price that maximizes your expected revenue?

2. What is the price that maximizes the expected market share of alter-
native i?
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3. What is the price that maximizes your expected revenue obtained from
individuals in group 1?

4. What is the price that maximizes your expected revenue obtained from
individuals in group 2?

5. What is the price that maximizes your expected revenue obtained from
individuals in group 3?

Hints

We recommend to use a spreadsheet and complete a table where each row
corresponds to a price level, and each column corresponds to a relevant in-
dicator:

• the market shares,

• the expected revenues of group 1,

• the expected revenues of group 2,

• the expected revenues of group 3,

• the total expected revenues.
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Forecasting – 7.4 Revenue maximization

Michel Bierlaire

Solution of the practice quiz: revenue maximization

We start by calculating the deterministic part of the utility of both alter-
natives. They are defined as

Vin = βpnpi − 0.5,

Vjn = βpnpj,

where βpn is the coefficient of the cost associated with individual n and pj = 2.
The values for Vin can be found in the following table:

Vin

pi n ∈ Group 1 n ∈ Group 2 n ∈ Group 3
1 -1.5 -1 -0.6
3 -3.5 -2 -0.8
5 -5.5 -3 -1
7 -7.5 -4 -1.2
9 -9.5 -5 -1.4
11 -11.5 -6 -1.6
13 -13.5 -7 -1.8

As the price is fixed for the competing alternative, the values of Vjn do not
vary among price levels:

1. n ∈ Group 1: Vjn = −2,

2. n ∈ Group 2: Vjn = −1, and

3. n ∈ Group 3: Vjn = −0.2.
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We can now calculate the probabilities for both alternatives. The proba-
bilities of individual n to choose each alternative are calculated as:

Pn(i|pi, pj) =
eVin

eVin + eVjn
,

Pn(j|pi, pj) = 1− Pn(i|pi, pj).

Their values for the different groups and price levels are shown in the follow-
ing table.

Pn(i|pi, pj) Pn(j|pi, pj)
pi n ∈ G. 1 n ∈ G. 2 n ∈ G. 3 n ∈ G. 1 n ∈ G. 2 n ∈ G. 3
1 0.622 0.500 0.401 0.378 0.500 0.599
3 0.182 0.269 0.354 0.818 0.731 0.646
5 0.0293 0.119 0.310 0.971 0.881 0.690
7 0.00407 0.0474 0.269 0.996 0.953 0.731
9 0.000553 0.018 0.231 0.999 0.982 0.769
11 0.0000748 0.00669 0.198 1.00 0.993 0.802
13 0.0000101 0.00247 0.168 1.00 0.998 0.832

Denote Gk the set of individuals belonging to group k. The market share
of alternative i within group k is

1

Nk

∑

n∈Gk

Pn(i|pi, pj) =
1

Nk

NkPn(i|pi, pj) = Pn(i|pi, pj),

as the choice model is the same for all individuals in a group. Therefore, we
can denote it as

Pk(i|pi, pj).

Thus, the market shares of each alternative within group k are directly the
probabilities from the above table. The total market share of alternative i in
the population is then calculated as

1
∑

3

k=1
Nk

3∑

k=1

NkPk(i|pi, pj).

Once the market shares have been calculated, we can obtain the revenue
generated by group k as follows:

piNkPk(i|pi, pj).
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The total revenue is therefore obtained as:

pi

3∑

k=1

NkPk(i|pi, pj).

The following table contains the revenue of alternative i per group, the
market share of alternative i and the total revenue.

pi Market share (%) Rev. G. 1 Rev. G. 2 Rev. G. 3 Total Rev.
1 49.7 186.7 150.0 160.5 497.3
3 27.7 164.2 242.0 425.2 831.4
5 16.9 43.97 178.8 620.1 842.8
7 12.3 8.547 99.59 753.0 861.2
9 9.82 1.493 48.56 833.3 883.4
11 8.12 0.247 22.09 870.4 892.7
13 6.79 0.03951 9.643 873.5 883.2

1. The price that maximizes your expected revenue is 11.

2. The price that maximizes the expected market share of alternative i is
1.

3. The price that maximizes your expected revenue obtained from indi-
viduals in group 1 is 1.

4. The price that maximizes your expected revenue obtained from indi-
viduals in group 2 is 3.

5. The price that maximizes your expected revenue obtained from indi-
viduals in group 3 is 13.
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