Discrete event simulation

Prof.dr.ir. Alexander Verbraeck Professor, Faculty of TPM, TU Delft

Overview

- What is discrete event simulation?
- Where does it fit historically?
- How does it differ from other types of simulation?
- What are the steps in a simulation study?
- What are the important aspects of simulation for infrastructure studies?
- Summary

Simulation

TUDelft

Simulation is: [Shannon, 1975]

- a process of designing a model of a concrete system
- and conducting experiments with this model
- in order to understand the behavior of a concrete system
- and/or to evaluate various strategies for the operation of the system

Simulation

TUDelft

Simulation is: [Shannon, 1975]

- a process of designing a model of a concrete system
- and conducting experiments with this model
- in order to understand the behavior of a concrete system
- and/or to evaluate various strategies for the operation of the system

What-if: parameters \rightarrow output

Why discrete simulation?

Instrument to:

- evaluate a systems design
- compare alternative solutions
- predict systems performance

Mainly used for logistical problems:

expected use of limited capacity or resources

In some cases more advanced use:

- sensitivity analysis
- optimization

Systems thinking

Systems thinking

Similarities and differences

- Models are used to study the relationships between variables
- Simulation models study the evolution of variables over time
- The values of the model variables at a given time is called the state of the model
- In discrete-event simulation models, state changes occur at an instant of time
- An event is a change in model state, occurring at an instant

Similarities and differences

In continuous models, state is a continuous function of time:

Similarities and differences

In discrete-event models, state is a piecewise constant function over time:

Discrete changes over time

Very useful for:

- Queuing systems
- Resource usage
- Transportation
- Logistics and warehousing
- Control systems
- etc.

For all these systems it means that we have to focus on the **events**, i.e. the start and the end of processes rather than the evolution of the process itself

Simulation model lifecycle

Steps in a simulation study

- Conceptualization Demarcation **Specification** Reduction Data gathering Model building Verification and validation Experimentation Analysis -Alternative generation Model adaptation
- Conclusions and reporting

Simulation project plan

Traditional: waterfall model or iterative modeling But better: incremental modeling

Simulation project plan

Traditional: waterfall model or iterative modeling But better: incremental modeling

Simulation project plan

Traditional: waterfall model or iterative modeling

But better: incremental modeling

Conceptualisation

Output:

a number of conceptual models that can be used to describe the system

- Demarcation of the system
- Language by which the system can be described:
 - object based (object model)
 - process based (process model)
 - time based (event list)

Conceptualisation

Conceptualisation

Specification

Output:

working model that can be experimented with

- Reduction of the model
- Specification of model
- Detailed input/output specification
- Data gathering
- Build simulation model

Data for discrete simulation

- generators of items
- process durations in the model
- resource availability
- How to gather data:
 - historical sources
 - expert opinions
 - measurements
 - analogous systems

Verification/validation

Output:

simulation model that is correct and is a good representation of the real system

- Verification (correct representation of conceptual model)
- Validation (models represents reality):
 - structural: testing of hypotheses on the model
 - operational: compare values to real system values
 - expert: analysis of the model by experts

Verification/validation

Sargent, R.G. (2009). VERIFICATION AND VALIDATION OF SIMULATION MODELS. In: M. D. Rossetti, et al. (Eds.) *Proceedings of the 2009 Winter Simulation Conference*, IEEE, 2009, pp. 162 - 176.

Experiment specification

Output:

the run control conditions under which the system, or the model of it, is experimented with or observed

- Number of runs
- Run length
- Start-up time
- Values of input parameters
- Output parameters to be calculated

Analysis and diagnosis

Output:

results of analysis and diagnosis of the experiments with the model of the current situation

- Comparing alternatives
- Statistical analysis
- Current bottlenecks (long queues, idle resources, etc.)
- Sensitivity analysis for stability of results

Analysis and diagnosis

Statistical analysis

I-lest		

[DataSet0]

Group Statistics							
	ScenarioID	Ν	Mean	Std. Deviation	Std. Error Mean		
GemAantalnWachtrijAan meldpunt	1.00	30	1.9531	.95607	.17455		
	2.00	30	.0983	.02085	.00381		

Independent Samples Test										
		Levene's Test Varia	for Equality of nces	t-test for Equality of Means						
		Mean				Std. Error	95% Confidence Interval of the Difference			
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
GemAantalnWachtrijAan meldpunt	Equal variances assumed	15.133	.000	10.623	58	.000	1.85479	.17460	1.50530	2.20428
	Equal variances not assumed			10.623	29.028	.000	1.85479	.17460	1.49772	2.21186

Infrastructure simulation

- Replicate system components 1:1 as simulation model components
- Use of hierarchy to build a model "bottom-up"
- Libraries of components available in multiple simulation languages
- Infrastructure capacity and usage
 ↔ resource capacity and usage
- Animation can help in building, debugging and presenting
- All simulation libraries have components that gather many different statistics

Conclusions

- Discrete-event simulation:
 - state change over time
 - events
 - piecewise constant state
 - fast execution
- Model cycle:
 - incremental building
 - building blocks
 - hierarchy, flow, process
- Data-intensive
 - stochastic
 - statistics for input and output

Thank you for your attention!

Please post any questions you may have on our discussion forum