Module 6
LLMOps




Learning Objectives

By the end of this module you will:
» Discuss how traditional MLOps can be adapted for LLMs.
« Review end-to-end workflows and architectures.

« Assess key concerns for LLMOps such as cost/performance tradeoffs,
deployment options, monitoring and feedback.

« Walk through the development-to-production workflow for deploying a
scalable LLM-powered data pipeline.

©2023 Databricks Inc. — All rights reserved @



MLOps

ML and Al are becoming critical for businesses

100

Goals of MLOps
P Google Search
« Maintain stable performance *  popularity of
Meet KPls MLOps

50

Update models and systems as needed
Reduce risk of system failures

25

oM Ml ANWW
2019-01-01 2020-01-01 2021-01-01

« Maintain long-term efficiency
Automate manual work as needed
Reduce iteration cycles dev—prod
Reduce risk of noncompliance with requirements and regulations

©2023 Databricks Inc. — All rights reserved Source: google.com

2022-01-01

2023-01-01


https://trends.google.com/trends/explore?date=today%205-y&q=mlops&hl=en

Traditional MLOps:

“Code, data, models, action

n
!

©2023 Databricks Inc. — All rights reserved @



MLOps = DevOps + DataOps + ModelOps

A set of processes and automation
for managing ML code, data and models
to improve performance and long-term efficiency

® Dev-staging-prod workflow @ Feature Store
@ ® Testing and monitoring ® Automated model retraining
® CI/CD ® Scoring pipelines and serving APIs
MoDELOPS (+) DaTAOPS (+)  DEVOPS ,
® Model Registry ®

©2023 Databricks Inc. — All rights reserved See "The Big Book of MLOps" for an overview @



https://www.databricks.com/resources/ebook/the-big-book-of-mlops

Traditional MLOps architecture

Source control

@ pdev > ‘@ pstaging (main) = 2] KJrelease

Merge request to staging Cut release branch Pull from release branch to production

Staging Production
environment environment

mlflow : Model Registry i

1%,

Development
environment

Create dev branch

H ? 37 R H
4 ’ - @4 S :
H ° ° Jo° '
I R (O :
4
é """"""""""" : iferarice Bisbiving Push model to registry Load model for testing Load model for inference
E Exploratory E Unit tests Integration
i dataanalysis | Feature table refresh ©n > tests(Cl)
: : Promote to production Inference & serving
Model training
N N p release
E
™ N Feature Model Continuous o
table refresh training Deployment (CD) ~  Monitoring —_

[ Corm— | Cr— |
Data tables Feature tables Feature tables Data tables Feature tables Metrics tables

Pipeline —) Reads % Model E Repo I Task —) Writes ~—— Model transition p Branch
©2023 Databricks Inc. — All rights reserved <




Traditional MLOps: Development environment

Development
environment

Create dev branch

Inference & serving
Exploratory
data analysis ! Feature table refresh

Model training

Pipeline % Reads % Model E Repo I Task —> Writes - Model transition p Branch
©2023 Databricks Inc. — All rights reserved @



Traditional MLOps: Source control

Source control

) ‘@ p staging (main)

Merge request to staging Cut release branch Pull from release branch to production

ml

Pipeline —) Reads % Model E Repo I Task —) Writes ~—— Model transition p Branch
©2023 Databricks Inc. — All rights reserved <



Traditional MLOps: Data

ml

I —— [

Data tables Feature tables Data tables Feature tables Metrics tables

Pipeline % Reads S Model E Repo I Task % Writes ~—— Model transition p Branch
©2023 Databricks Inc. — All rights reserved <



Traditional MLOps: Staging environment

Staging
environment

Unit tests Integration

©n -> tests (Cl)

N /N

Pipeline % Reads % Model E Repo I Task —> Writes Model transition p Branch
©2023 Databricks Inc. — All rights reserved



Traditional MLOps: Production environment

Production
environment

i Model Registry

Stage: Staging Stage: Production

| | 1
Push model to registry Load model for testing Load model for inference

—
)

iference & serving
, — P release

Feature Model Continuous o
table refresh training Deployment (CD) Monitoring

Pipeline —) Reads % Model E Repo I Task —) Writes ~ Model transition p Branch
©2023 Databricks Inc. — All rights reserved <



LLMOps:
“How will LLMs change MLOps?”

y

©2023 Databricks Inc. — All rights reserved <



Source control

= @ PP release

Cut release branch Pull from release branch to production

Staging Production
environment environment

mlflow : Model Registry :

P

@ p dev > p staging (main)
7 Merge request to staging ;

Development
environment

Create dev branch

) ' P \-p <) :
: % @4 cri-]ff: :
: N N Jo° :
N\ %
Inference & serving . . Push model to registry Load model for testing Ioatimodel torkfererce
. Exploratory Unit tests Integration
: dataanalysis : Feature table refresh ©n > tests(Cl)

Promote to production Inference & serving

— 1.9 release

N N

™ N Feature Model Continuous o
table refresh training Deployment (CD) ~  Monitoring —_

Data tables Feature tables Feature tables Data tables Feature tables Metrics tables

— Pipeline —) Reads % Model E Repo I Task —) Writes ~—— Model transition p Branch
©2023 Databricks Inc. — All rights reserved <




Adapting MLOps for LLMs

s
“Model” may be a model (LLM)
or a pipeline (e.g., LangChain
chain). It may also call other
services like vector databases.

~N

J

Feature table refr

Model training

esh

Pipeline % Reads Model
mm v %

&

©2023 Databricks Inc. — All rights reserved

“Model training” may be
replaced by 1 or more of:
e Model fine-tuning

e Pipeline tuning
e Prompt engineering

J

I Task —> Writes

Model transition

p Branch



Adapting MLOps for LLMs

Traditional monitoring may
be augmented by a constant

Human/user feedback may be human feedback loop.
an important datasource from
dev to prod.

Monitoring

— Pipeline % Reads % Model E Repo I Task —> Writes Model transition p Branch
©2023 Databricks Inc. — All rights reserved @



Adapting MLOps for LLMs

-

Automated testing of
quality may be much
more difficult. Augment
it with human evaluation.

\ Model Registry

Load model for testing

Promote to production

~H

Continuous
Deployment (CD)

Pipeline % Reads % Model E Repo I Task —> Writes Model transition p Branch
©2023 Databricks Inc. — All rights reserved



Adapting MLOps for LLMs

Jr testing

Different production tooling:

big models, vector databases, ~

etc. production Inference & serving
Feature tables el
database
Pipeline % Reads % Model E Repo I Task —> Writes - Model transition p Branch

©2023 Databricks Inc. — All rights reserved @



Adapting MLOps for LLMs

4 )
(" N Larger cost, latency, and

If model training or tuning
. performance tradeoffs for
are needed, managing cost : .
model serving, especially

and performance can be

. with 3rd-party LLM APIs
challenging. \_
Feature table refresh
rroduction Inference & serving
Model training
-
Vector
database
Pipeline % Reads % Model E Repo I Task —> Writes Model transition p Branch

©2023 Databricks Inc. — All rights reserved @



Some things change—but

Ada O tin M LO 0S for LLMS _even more remain similar.

Source control

2] P dev > ‘[z 9 staging (main) > BEEl U release
7 Merge request to staging ; Cut release branch S | Pull from release branch to production

Development
environment

Production
environment

Staging

environment

mIfIC)W : Model Registry :

P

Create dev branch

' 9 9 )| i
T g & S z
! N N Jo° !
T P :
4
é """"""""""" : iferarice Bisbiving Push model to registry Load model for testing Load model for inference
\  Exploratory Unit tests Integration
i data analysis ! Feature table refresh ©n > tests(Cl)
] : Promote to production Inference & serving
........................ E——
G i 4 ap — P release
™ N Feature Model Continuous o
table refresh training Deployment (CD) ~  Monitoring -

v 4
o
Vector

database

|
—m— 8 pafn 8- @J 8

[e1

Pipeline —) Reads % Model E Repo I Task —) Writes ~—— Model transition p Branch
©2023 Databricks Inc. — All rights reserved <

Data tables Feature tables Feature tables Data tables Feature tables Metrics tables



LLMOps detalls:

“Plan for key concerns which you may
encounter with operating LLMs”

y




Key concerns

« Prompt engineering

« Packaging models or pipelines for deployment
e Scaling out

« Managing cost/performance tradeoffs

« Human feedback, testing, and monitoring

« Deploying models vs. deploying code

« Service infrastructure: vector databases and complex models

©2023 Databricks Inc. — All rights reserved



Prompt engineering

/1. Track \
Track queries and

responses, compare, and
iterate on prompts.

Example tools:
MLflow

\ /

©2023 Databricks Inc. — All rights reserved

/Z.Template

Standardize prompt
formats using tools for
building templates.

~

Example tools:
LangChain,

| lamalndex

\

G Automate \

Replace manual prompt
engineering with
automated tuning.

Example tools:
DSP (Demonstrate-
Search-Predict

Qamewo rk)

/



https://mlflow.org/
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://python.langchain.com/en/latest/index.html
https://gpt-index.readthedocs.io/en/stable/

Packaging models or pipelines for deployment

Standardizing deployment for many types of models and pipelines

Model
API

(New) fine-tuned
model

(encodlng) (LLM) (decoding)

angChaln chain

Vector DB | Prompt ) Hugging Face
lookup template pipeline

©2023 Databricks Inc. — All rights reserved @

ugglng Face plpelme
Tokenizer Model Tokenizer }




Packaging models or pipelines for deployment

Standardizing deployment for many types of models and pipelines

Model J mlflow.openai.log model(model="gpt-3.5-turbo",

API task=openai.ChatCompletion, ...)

model

N

(New) fine-tuned mlflow.pytorch.log_model(
J pytorch _model=my finetuned model, ...)

Hugging Face pipeline mlflow.transformers.log_model(

Tokenizer Model Tokenizer transformers_model=dolly
(encoding) (LLM) (decoding) artifact_path="dolly3b", ...)

)

LangChain chain

Vector DB | o Prompt b - Hugging Face mlflow.langchain.log_model(lc_model=11lm_chain, ...
lookup template pipeline J

O =)

©2023 Databricks Inc. — All rights reserved @



mlflow

An open source platform for the machine learning lifecycle

Custom

m |f/ W'

Models
Flavor 1 Flavor 2
GIIEA

] ]

miflow

miflow
Model Registry

Data Scientists

A

Deployment Engineers

A

N

4 [

N

Staging

Tracking
R
% Metrics Artifacts
9
Metadata Models

10.2 mil downloads/month (April 2023)
More at mlflow.org, including info on LLM Tracking and MLflow Recipes.

©2023 Databricks Inc. — All rights reserved

Eggi’\@}

- —

Production

Archived

./

mliflow

Deployment

>

/%'

>

>

Options
A

In-Line Code

Jg%?docker

kubernetes

Containers

Batch & Stream
Scoring

< databricks

A r;}izlérh?ne Learning A SR G
Cloud Inference

Services

OSS Serving
Solutions


https://pypistats.org/packages/mlflow
https://mlflow.org/

Scaling out

Distribute computation for larger data and models

Fine-tuning and training
- Distributed Tensorflow O PyTorch Mo
« Distributed PyTorch ") Spoark

« DeepSpeed Tensor
« Optionally run on Apache Spark, Ray, etc.

> > > B

NVIDIA NVIDIA NVIDIA

Serving and inference — — = A

DELTA LAKE

« Real-time: scale out end points
« Streaming and batch: Scale out pipelines, e.g. Spark + Delta Lake

©2023 Databricks Inc. — All rights reserved @



Managing cost/performance tradeoffs

Metrics to optimize

Cost of queries and training
Time for development

ROI of the LLM-powered product
Accuracy/metrics of model
Query latency

Tips for optimizing

Go simple to complex: Existing models — Prompt engineering — Fine-tuning
Scope out costs.

Reduce costs by tweaking models, queries, and configurations.

Get human feedback.

Don’t over-optimize!

©2023 Databricks Inc. — All rights reserved



Human feedback, testing, and monitoring

Human feedback is critical, so plan for it!

 Build human feedback into your application from the beginning.

« Operationally, human feedback should be treated like any other data:
feed it into your Lakehouse to make it available for analysis and tuning.

Q: Hey tech support bot, how can | upload

Select the best image to download it. " o GO LD EEEE
A: Go to the user home screen, and click
Sources of the image of a document in the sidebar.
- implicit user Sources:
e Docs: File management
feedback. e Docs: User home screen l
Click here to chat with a human. @

©2023 Databricks Inc. — All rights reserved @



Deploying models vs. deploying code

What asset(s) move from dev to prod?

Prompt
engineering
and pipeline
tuning

Fine-tuning
or training
models

Both

Deploy models
Deploy pipelines as o e -
“models” o] - G5

Deploy code or models;

depends on problem size. Deploy code
Train novel model = $IM+

Fine-tune model = $100 JE

. . f — (hZo
Consider service i <> ¥

|</>| Training code

©2023 Databricks Inc. — All rights reserved Source: The Big Book of MLOps

architecture oo ’

s
="y
o°
&
S
1
ol
! L 5
]
i
Models


https://www.databricks.com/resources/ebook/the-big-book-of-mlops

Service architecture

Vector databases

LLM pipeline e ~

batch job Vector DB in local
\\\\\\ cache L

LLM-based
embedding
/

\_ o

(. . ™
LLM pipeline Vector DB service

API LLM-based
(or batch job) embedding
- /

©2023 Databricks Inc. — All rights reserved

Complex models behind APIs

« Models have complex behavior and
can be stochastic.

« How can you make these APIs stable
and compatible?

LLM pipeline LLM pipeline
v1.0 V1l

What behavior would you expect?

« Same query, same model version
« Same query, updated model



Module Summary
LLMOps - What have we learned?

« LLMOps processes and automation help to ensure stable performance
and long-term efficiency.

* LLMs put new requirements on MLOps platforms — but many parts of
Ops remain the same as with traditional ML.

- Tackle challenges in each step of the LLMOps process as needed.

©2023 Databricks Inc. — All rights reserved @



Time for some code!

©2023 Databricks Inc. — All rights reserved



