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Module 6
LLMOps
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Learning Objectives

By the end of this module you will:

• Discuss how traditional MLOps can be adapted for LLMs.

• Review end-to-end workflows and architectures.

• Assess key concerns for LLMOps such as cost/performance tradeoffs, 
deployment options, monitoring and feedback.

• Walk through the development-to-production workflow for deploying a 
scalable LLM-powered data pipeline.
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Goals of MLOps

• Maintain stable performance
• Meet KPIs
• Update models and systems as needed
• Reduce risk of system failures

• Maintain long-term efficiency
• Automate manual work as needed
• Reduce iteration cycles dev→prod
• Reduce risk of noncompliance with requirements and regulations

MLOps

Google Search 
popularity of 
“MLOps”

Source: google.com

ML and AI are becoming critical for businesses

https://trends.google.com/trends/explore?date=today%205-y&q=mlops&hl=en
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Traditional MLOps: 
“Code, data, models, action!”
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MLOps = DevOps + DataOps + ModelOps

A set of processes and automation
for managing ML code, data and models
to improve performance and long-term efficiency

● Dev-staging-prod workflow

● Testing and monitoring

● CI/CD

● Model Registry

See “The Big Book of MLOps” for an overview

MODELOPS DATAOPS DEVOPS

● Feature Store

● Automated model retraining

● Scoring pipelines and serving APIs

● …
+ +

https://www.databricks.com/resources/ebook/the-big-book-of-mlops
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Traditional MLOps architecture
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Traditional MLOps: Development environment
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Traditional MLOps: Source control
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Traditional MLOps: Data
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Traditional MLOps: Staging environment
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Traditional MLOps: Production environment
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LLMOps: 
“How will LLMs change MLOps?”
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Adapting MLOps for LLMs



©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

“Model” may be a model (LLM) 
or a pipeline (e.g., LangChain 
chain).  It may also call other 
services like vector databases.

“Model training” may be 
replaced by ø or more of:

● Model fine-tuning
● Pipeline tuning
● Prompt engineering
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Adapting MLOps for LLMs

Human/user feedback may be 
an important datasource from 
dev to prod.

Traditional monitoring may 
be augmented by a constant 
human feedback loop.
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Adapting MLOps for LLMs

Automated testing of 
quality may be much 
more difficult.  Augment 
it with human evaluation.
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Adapting MLOps for LLMs

Different production tooling: 
big models, vector 
databases, etc.

Vector 
database

Different production tooling: 
big models, vector databases, 
etc.



©ù÷ùú Databricks Inc. — All rights reserved

Vector 
database

Adapting MLOps for LLMs

Larger cost, latency, and 
performance tradeoffs for 
model serving, especially 
with úrd-party LLM APIs

If model training or tuning 
are needed, managing cost 
and performance can be 
challenging.
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Adapting MLOps for LLMs
Some things change—but 
even more remain similar.

Vector 
database
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LLMOps details: 
“Plan for key concerns which you may 
encounter with operating LLMs”
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• Prompt engineering

• Packaging models or pipelines for deployment

• Scaling out

• Managing cost/performance tradeoffs

• Human feedback, testing, and monitoring

• Deploying models vs. deploying code

• Service infrastructure: vector databases and complex models

Key concerns
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1. Track

Track queries and 
responses, compare, and 
iterate on prompts.

Example tools:
MLflow

3. Automate

Replace manual prompt 
engineering with 
automated tuning.

Example tools:
DSP (Demonstrate- 
Search-Predict 
Framework)

2. Template

Standardize prompt 
formats using tools for 
building templates.

Example tools:
LangChain,
LlamaIndex

Prompt engineering

https://mlflow.org/
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://python.langchain.com/en/latest/index.html
https://gpt-index.readthedocs.io/en/stable/
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Packaging models or pipelines for deployment

Vector DB 
lookup

Prompt 
template

Hugging Face 
pipeline

LangChain chain

(New) fine-tuned 
model

Model 
API

Standardizing deployment for many types of models and pipelines

Tokenizer
(encoding)

Model 
(LLM)

Tokenizer 
(decoding)

Hugging Face pipeline
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Packaging models or pipelines for deployment

Vector DB 
lookup

Prompt 
template

Hugging Face 
pipeline

LangChain chain

(New) fine-tuned 
model

Model 
API

Standardizing deployment for many types of models and pipelines

Tokenizer
(encoding)

Model 
(LLM)

Tokenizer 
(decoding)

Hugging Face pipeline

mlflow.openai.log_model(model="gpt-3.5-turbo",

  task=openai.ChatCompletion, …)

mlflow.pytorch.log_model(

pytorch_model=my_finetuned_model, …)

mlflow.transformers.log_model(

transformers_model=dolly

artifact_path="dolly3b", …)

mlflow.langchain.log_model(lc_model=llm_chain, …)
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10.2 mil downloads/month (April 2023)
More at mlflow.org, including info on LLM Tracking and MLflow Recipes.

Staging Production Archived

Data Scientists Deployment Engineers

v1

v2

Models Tracking

Flavor ùFlavor ø

Model Registry

Custom
Models

In-Line Code

Containers

Batch & Stream 
Scoring

Cloud Inference 
Services

OSS Serving 
Solutions

Parameters Metrics Artifacts

ModelsMetadata

Deployment 
Options

🦜🔗

An open source platform for the machine learning lifecycle

https://pypistats.org/packages/mlflow
https://mlflow.org/
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Fine-tuning and training

• Distributed Tensorflow
• Distributed PyTorch
• DeepSpeed
• Optionally run on Apache Spark, Ray, etc.

Serving and inference

• Real-time: scale out end points
• Streaming and batch: Scale out pipelines, e.g. Spark + Delta Lake

Scaling out
Distribute computation for larger data and models
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Managing cost/performance tradeoffs

Metrics to optimize
• Cost of queries and training
• Time for development
• ROI of the LLM-powered product
• Accuracy/metrics of model
• Query latency

Tips for optimizing
• Go simple to complex: Existing models → Prompt engineering → Fine-tuning
• Scope out costs.
• Reduce costs by tweaking models, queries, and configurations.
• Get human feedback.
• Don’t over-optimize!
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Human feedback, testing, and monitoring

• Build human feedback into your application from the beginning.

• Operationally, human feedback should be treated like any other data: 
feed it into your Lakehouse to make it available for analysis and tuning.

Select the best image to download it.

A: Go to the user home screen, and click 
the image of a document in the sidebar.
Sources:

● Docs: File management
● Docs: User home screen

Click here to chat with a human.

Q: Hey tech support bot, how can I upload 
a file to the app?

Sources of 
implicit user 

feedback.

Human feedback is critical, so plan for it! 
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Deploying models vs. deploying code

Source: The Big Book of MLOps

Prompt 
engineering 
and pipeline 
tuning

Deploy pipelines as 
“models”

Fine-tuning 
or training 
models

Deploy code or models; 
depends on problem size.
Train novel model ⇒ $øM+
Fine-tune model ⇒ $ø÷÷

Both Consider service 
architecture

Deploy code

Deploy models

What asset(s) move from dev to prod? 

https://www.databricks.com/resources/ebook/the-big-book-of-mlops
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Complex models behind APIs

• Models have complex behavior and 
can be stochastic.

• How can you make these APIs stable 
and compatible?

What behavior would you expect?

• Same query, same model version
• Same query, updated model

Service architecture

LLM pipeline
batch job Vector DB in local 

cache
LLM-based 
embedding

LLM pipeline
vø.÷

LLM pipeline
vø.ø

LLM pipeline 
API
(or batch job)

Vector DB service

LLM-based 
embedding

Vector databases
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• LLMOps processes and automation help to ensure stable performance 
and long-term efficiency.

• LLMs put new requirements on MLOps platforms — but many parts of 
Ops remain the same as with traditional ML.

• Tackle challenges in each step of the LLMOps process as needed.

Module Summary
LLMOps - What have we learned?
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Time for some code!


