
©ù÷ùú Databricks Inc. — All rights reserved

Module 6
LLMOps

©ù÷ùú Databricks Inc. — All rights reserved

Learning Objectives

By the end of this module you will:

• Discuss how traditional MLOps can be adapted for LLMs.

• Review end-to-end workflows and architectures.

• Assess key concerns for LLMOps such as cost/performance tradeoffs,
deployment options, monitoring and feedback.

• Walk through the development-to-production workflow for deploying a
scalable LLM-powered data pipeline.

©ù÷ùú Databricks Inc. — All rights reserved

Goals of MLOps

• Maintain stable performance
• Meet KPIs
• Update models and systems as needed
• Reduce risk of system failures

• Maintain long-term efficiency
• Automate manual work as needed
• Reduce iteration cycles dev→prod
• Reduce risk of noncompliance with requirements and regulations

MLOps

Google Search
popularity of
“MLOps”

Source: google.com

ML and AI are becoming critical for businesses

https://trends.google.com/trends/explore?date=today%205-y&q=mlops&hl=en

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps:
“Code, data, models, action!”

©ù÷ùú Databricks Inc. — All rights reserved

MLOps = DevOps + DataOps + ModelOps

A set of processes and automation
for managing ML code, data and models
to improve performance and long-term efficiency

● Dev-staging-prod workflow

● Testing and monitoring

● CI/CD

● Model Registry

See “The Big Book of MLOps” for an overview

MODELOPS DATAOPS DEVOPS

● Feature Store

● Automated model retraining

● Scoring pipelines and serving APIs

● …
+ +

https://www.databricks.com/resources/ebook/the-big-book-of-mlops

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps architecture

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps: Development environment

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps: Source control

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps: Data

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps: Staging environment

©ù÷ùú Databricks Inc. — All rights reserved

Traditional MLOps: Production environment

©ù÷ùú Databricks Inc. — All rights reserved

LLMOps:
“How will LLMs change MLOps?”

©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

“Model” may be a model (LLM)
or a pipeline (e.g., LangChain
chain). It may also call other
services like vector databases.

“Model training” may be
replaced by ø or more of:

● Model fine-tuning
● Pipeline tuning
● Prompt engineering

©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

Human/user feedback may be
an important datasource from
dev to prod.

Traditional monitoring may
be augmented by a constant
human feedback loop.

©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

Automated testing of
quality may be much
more difficult. Augment
it with human evaluation.

©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

Different production tooling:
big models, vector
databases, etc.

Vector
database

Different production tooling:
big models, vector databases,
etc.

©ù÷ùú Databricks Inc. — All rights reserved

Vector
database

Adapting MLOps for LLMs

Larger cost, latency, and
performance tradeoffs for
model serving, especially
with úrd-party LLM APIs

If model training or tuning
are needed, managing cost
and performance can be
challenging.

©ù÷ùú Databricks Inc. — All rights reserved

Adapting MLOps for LLMs
Some things change—but
even more remain similar.

Vector
database

©ù÷ùú Databricks Inc. — All rights reserved

LLMOps details:
“Plan for key concerns which you may
encounter with operating LLMs”

©ù÷ùú Databricks Inc. — All rights reserved

• Prompt engineering

• Packaging models or pipelines for deployment

• Scaling out

• Managing cost/performance tradeoffs

• Human feedback, testing, and monitoring

• Deploying models vs. deploying code

• Service infrastructure: vector databases and complex models

Key concerns

©ù÷ùú Databricks Inc. — All rights reserved

1. Track

Track queries and
responses, compare, and
iterate on prompts.

Example tools:
MLflow

3. Automate

Replace manual prompt
engineering with
automated tuning.

Example tools:
DSP (Demonstrate-
Search-Predict
Framework)

2. Template

Standardize prompt
formats using tools for
building templates.

Example tools:
LangChain,
LlamaIndex

Prompt engineering

https://mlflow.org/
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://python.langchain.com/en/latest/index.html
https://gpt-index.readthedocs.io/en/stable/

©ù÷ùú Databricks Inc. — All rights reserved

Packaging models or pipelines for deployment

Vector DB
lookup

Prompt
template

Hugging Face
pipeline

LangChain chain

(New) fine-tuned
model

Model
API

Standardizing deployment for many types of models and pipelines

Tokenizer
(encoding)

Model
(LLM)

Tokenizer
(decoding)

Hugging Face pipeline

©ù÷ùú Databricks Inc. — All rights reserved

Packaging models or pipelines for deployment

Vector DB
lookup

Prompt
template

Hugging Face
pipeline

LangChain chain

(New) fine-tuned
model

Model
API

Standardizing deployment for many types of models and pipelines

Tokenizer
(encoding)

Model
(LLM)

Tokenizer
(decoding)

Hugging Face pipeline

mlflow.openai.log_model(model="gpt-3.5-turbo",

 task=openai.ChatCompletion, …)

mlflow.pytorch.log_model(

pytorch_model=my_finetuned_model, …)

mlflow.transformers.log_model(

transformers_model=dolly

artifact_path="dolly3b", …)

mlflow.langchain.log_model(lc_model=llm_chain, …)

©ù÷ùú Databricks Inc. — All rights reserved

10.2 mil downloads/month (April 2023)
More at mlflow.org, including info on LLM Tracking and MLflow Recipes.

Staging Production Archived

Data Scientists Deployment Engineers

v1

v2

Models Tracking

Flavor ùFlavor ø

Model Registry

Custom
Models

In-Line Code

Containers

Batch & Stream
Scoring

Cloud Inference
Services

OSS Serving
Solutions

Parameters Metrics Artifacts

ModelsMetadata

Deployment
Options

🦜🔗

An open source platform for the machine learning lifecycle

https://pypistats.org/packages/mlflow
https://mlflow.org/

©ù÷ùú Databricks Inc. — All rights reserved

Fine-tuning and training

• Distributed Tensorflow
• Distributed PyTorch
• DeepSpeed
• Optionally run on Apache Spark, Ray, etc.

Serving and inference

• Real-time: scale out end points
• Streaming and batch: Scale out pipelines, e.g. Spark + Delta Lake

Scaling out
Distribute computation for larger data and models

©ù÷ùú Databricks Inc. — All rights reserved

Managing cost/performance tradeoffs

Metrics to optimize
• Cost of queries and training
• Time for development
• ROI of the LLM-powered product
• Accuracy/metrics of model
• Query latency

Tips for optimizing
• Go simple to complex: Existing models → Prompt engineering → Fine-tuning
• Scope out costs.
• Reduce costs by tweaking models, queries, and configurations.
• Get human feedback.
• Don’t over-optimize!

©ù÷ùú Databricks Inc. — All rights reserved

Human feedback, testing, and monitoring

• Build human feedback into your application from the beginning.

• Operationally, human feedback should be treated like any other data:
feed it into your Lakehouse to make it available for analysis and tuning.

Select the best image to download it.

A: Go to the user home screen, and click
the image of a document in the sidebar.
Sources:

● Docs: File management
● Docs: User home screen

Click here to chat with a human.

Q: Hey tech support bot, how can I upload
a file to the app?

Sources of
implicit user

feedback.

Human feedback is critical, so plan for it!

©ù÷ùú Databricks Inc. — All rights reserved

Deploying models vs. deploying code

Source: The Big Book of MLOps

Prompt
engineering
and pipeline
tuning

Deploy pipelines as
“models”

Fine-tuning
or training
models

Deploy code or models;
depends on problem size.
Train novel model ⇒ $øM+
Fine-tune model ⇒ $ø÷÷

Both Consider service
architecture

Deploy code

Deploy models

What asset(s) move from dev to prod?

https://www.databricks.com/resources/ebook/the-big-book-of-mlops

©ù÷ùú Databricks Inc. — All rights reserved

Complex models behind APIs

• Models have complex behavior and
can be stochastic.

• How can you make these APIs stable
and compatible?

What behavior would you expect?

• Same query, same model version
• Same query, updated model

Service architecture

LLM pipeline
batch job Vector DB in local

cache
LLM-based
embedding

LLM pipeline
vø.÷

LLM pipeline
vø.ø

LLM pipeline
API
(or batch job)

Vector DB service

LLM-based
embedding

Vector databases

©ù÷ùú Databricks Inc. — All rights reserved

• LLMOps processes and automation help to ensure stable performance
and long-term efficiency.

• LLMs put new requirements on MLOps platforms — but many parts of
Ops remain the same as with traditional ML.

• Tackle challenges in each step of the LLMOps process as needed.

Module Summary
LLMOps - What have we learned?

©ù÷ùú Databricks Inc. — All rights reserved

Time for some code!

