
©  Databricks Inc. — All rights reserved

Module 6
LLMOps



©  Databricks Inc. — All rights reserved

Learning Objectives

By the end of this module you will:

• Discuss how traditional MLOps can be adapted for LLMs.

• Review end-to-end workflows and architectures.

• Assess key concerns for LLMOps such as cost/performance tradeoffs, 
deployment options, monitoring and feedback.

• Walk through the development-to-production workflow for deploying a 
scalable LLM-powered data pipeline.



©  Databricks Inc. — All rights reserved

Goals of MLOps

• Maintain stable performance
• Meet KPIs
• Update models and systems as needed
• Reduce risk of system failures

• Maintain long-term efficiency
• Automate manual work as needed
• Reduce iteration cycles dev→prod
• Reduce risk of noncompliance with requirements and regulations

MLOps

Google Search 
popularity of 
“MLOps”

Source: google.com

ML and AI are becoming critical for businesses

https://trends.google.com/trends/explore?date=today%205-y&q=mlops&hl=en


©  Databricks Inc. — All rights reserved

Traditional MLOps: 
“Code, data, models, action!”



©  Databricks Inc. — All rights reserved

MLOps = DevOps + DataOps + ModelOps

A set of processes and automation
for managing ML code, data and models
to improve performance and long-term efficiency

● Dev-staging-prod workflow

● Testing and monitoring

● CI/CD

● Model Registry

See “The Big Book of MLOps” for an overview

MODELOPS DATAOPS DEVOPS

● Feature Store

● Automated model retraining

● Scoring pipelines and serving APIs

● …
+ +

https://www.databricks.com/resources/ebook/the-big-book-of-mlops


©  Databricks Inc. — All rights reserved

Traditional MLOps architecture



©  Databricks Inc. — All rights reserved

Traditional MLOps: Development environment



©  Databricks Inc. — All rights reserved

Traditional MLOps: Source control



©  Databricks Inc. — All rights reserved

Traditional MLOps: Data



©  Databricks Inc. — All rights reserved

Traditional MLOps: Staging environment



©  Databricks Inc. — All rights reserved

Traditional MLOps: Production environment



©  Databricks Inc. — All rights reserved

LLMOps: 
“How will LLMs change MLOps?”



©  Databricks Inc. — All rights reserved

Adapting MLOps for LLMs



©  Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

“Model” may be a model (LLM) 
or a pipeline (e.g., LangChain 
chain).  It may also call other 
services like vector databases.

“Model training” may be 
replaced by  or more of:

● Model fine-tuning
● Pipeline tuning
● Prompt engineering



©  Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

Human/user feedback may be 
an important datasource from 
dev to prod.

Traditional monitoring may 
be augmented by a constant 
human feedback loop.



©  Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

Automated testing of 
quality may be much 
more difficult.  Augment 
it with human evaluation.



©  Databricks Inc. — All rights reserved

Adapting MLOps for LLMs

Different production tooling: 
big models, vector 
databases, etc.

Vector 
database

Different production tooling: 
big models, vector databases, 
etc.



©  Databricks Inc. — All rights reserved

Vector 
database

Adapting MLOps for LLMs

Larger cost, latency, and 
performance tradeoffs for 
model serving, especially 
with rd-party LLM APIs

If model training or tuning 
are needed, managing cost 
and performance can be 
challenging.



©  Databricks Inc. — All rights reserved

Adapting MLOps for LLMs
Some things change—but 
even more remain similar.

Vector 
database



©  Databricks Inc. — All rights reserved

LLMOps details: 
“Plan for key concerns which you may 
encounter with operating LLMs”



©  Databricks Inc. — All rights reserved

• Prompt engineering

• Packaging models or pipelines for deployment

• Scaling out

• Managing cost/performance tradeoffs

• Human feedback, testing, and monitoring

• Deploying models vs. deploying code

• Service infrastructure: vector databases and complex models

Key concerns



©  Databricks Inc. — All rights reserved

1. Track

Track queries and 
responses, compare, and 
iterate on prompts.

Example tools:
MLflow

3. Automate

Replace manual prompt 
engineering with 
automated tuning.

Example tools:
DSP (Demonstrate- 
Search-Predict 
Framework)

2. Template

Standardize prompt 
formats using tools for 
building templates.

Example tools:
LangChain,
LlamaIndex

Prompt engineering

https://mlflow.org/
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://github.com/stanfordnlp/dsp
https://python.langchain.com/en/latest/index.html
https://gpt-index.readthedocs.io/en/stable/


©  Databricks Inc. — All rights reserved

Packaging models or pipelines for deployment

Vector DB 
lookup

Prompt 
template

Hugging Face 
pipeline

LangChain chain

(New) fine-tuned 
model

Model 
API

Standardizing deployment for many types of models and pipelines

Tokenizer
(encoding)

Model 
(LLM)

Tokenizer 
(decoding)

Hugging Face pipeline



©  Databricks Inc. — All rights reserved

Packaging models or pipelines for deployment

Vector DB 
lookup

Prompt 
template

Hugging Face 
pipeline

LangChain chain

(New) fine-tuned 
model

Model 
API

Standardizing deployment for many types of models and pipelines

Tokenizer
(encoding)

Model 
(LLM)

Tokenizer 
(decoding)

Hugging Face pipeline

mlflow.openai.log_model(model="gpt-3.5-turbo",

  task=openai.ChatCompletion, …)

mlflow.pytorch.log_model(

pytorch_model=my_finetuned_model, …)

mlflow.transformers.log_model(

transformers_model=dolly

artifact_path="dolly3b", …)

mlflow.langchain.log_model(lc_model=llm_chain, …)



©  Databricks Inc. — All rights reserved

10.2 mil downloads/month (April 2023)
More at mlflow.org, including info on LLM Tracking and MLflow Recipes.

Staging Production Archived

Data Scientists Deployment Engineers

v1

v2

Models Tracking

Flavor Flavor 

Model Registry

Custom
Models

In-Line Code

Containers

Batch & Stream 
Scoring

Cloud Inference 
Services

OSS Serving 
Solutions

Parameters Metrics Artifacts

ModelsMetadata

Deployment 
Options

🦜🔗

An open source platform for the machine learning lifecycle

https://pypistats.org/packages/mlflow
https://mlflow.org/


©  Databricks Inc. — All rights reserved

Fine-tuning and training

• Distributed Tensorflow
• Distributed PyTorch
• DeepSpeed
• Optionally run on Apache Spark, Ray, etc.

Serving and inference

• Real-time: scale out end points
• Streaming and batch: Scale out pipelines, e.g. Spark + Delta Lake

Scaling out
Distribute computation for larger data and models



©  Databricks Inc. — All rights reserved

Managing cost/performance tradeoffs

Metrics to optimize
• Cost of queries and training
• Time for development
• ROI of the LLM-powered product
• Accuracy/metrics of model
• Query latency

Tips for optimizing
• Go simple to complex: Existing models → Prompt engineering → Fine-tuning
• Scope out costs.
• Reduce costs by tweaking models, queries, and configurations.
• Get human feedback.
• Don’t over-optimize!



©  Databricks Inc. — All rights reserved

Human feedback, testing, and monitoring

• Build human feedback into your application from the beginning.

• Operationally, human feedback should be treated like any other data: 
feed it into your Lakehouse to make it available for analysis and tuning.

Select the best image to download it.

A: Go to the user home screen, and click 
the image of a document in the sidebar.
Sources:

● Docs: File management
● Docs: User home screen

Click here to chat with a human.

Q: Hey tech support bot, how can I upload 
a file to the app?

Sources of 
implicit user 

feedback.

Human feedback is critical, so plan for it! 



©  Databricks Inc. — All rights reserved

Deploying models vs. deploying code

Source: The Big Book of MLOps

Prompt 
engineering 
and pipeline 
tuning

Deploy pipelines as 
“models”

Fine-tuning 
or training 
models

Deploy code or models; 
depends on problem size.
Train novel model ⇒ $ M+
Fine-tune model ⇒ $

Both Consider service 
architecture

Deploy code

Deploy models

What asset(s) move from dev to prod? 

https://www.databricks.com/resources/ebook/the-big-book-of-mlops


©  Databricks Inc. — All rights reserved

Complex models behind APIs

• Models have complex behavior and 
can be stochastic.

• How can you make these APIs stable 
and compatible?

What behavior would you expect?

• Same query, same model version
• Same query, updated model

Service architecture

LLM pipeline
batch job Vector DB in local 

cache
LLM-based 
embedding

LLM pipeline
v .

LLM pipeline
v .

LLM pipeline 
API
(or batch job)

Vector DB service

LLM-based 
embedding

Vector databases



©  Databricks Inc. — All rights reserved

• LLMOps processes and automation help to ensure stable performance 
and long-term efficiency.

• LLMs put new requirements on MLOps platforms — but many parts of 
Ops remain the same as with traditional ML.

• Tackle challenges in each step of the LLMOps process as needed.

Module Summary
LLMOps - What have we learned?



©  Databricks Inc. — All rights reserved

   

Time for some code!


