Module 6 LLMOps

Learning Objectives

By the end of this module you will:

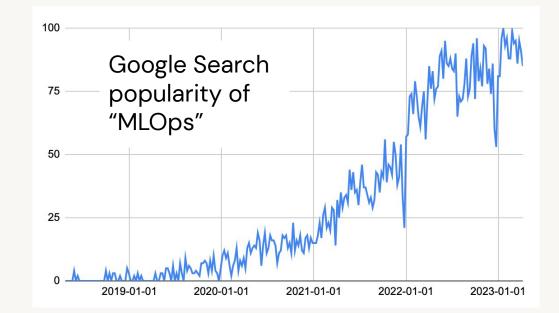
- Discuss how traditional MLOps can be adapted for LLMs.
- Review end-to-end workflows and architectures.
- Assess key concerns for LLMOps such as cost/performance tradeoffs, deployment options, monitoring and feedback.
- Walk through the development-to-production workflow for deploying a scalable LLM-powered data pipeline.

MLOps

ML and AI are becoming critical for businesses

Goals of MLOps

- Maintain stable performance
 - Meet KPIs
 - Update models and systems as needed
 - Reduce risk of system failures



- Maintain long-term efficiency
 - Automate manual work as needed
 - Reduce iteration cycles dev→prod
 - Reduce risk of noncompliance with requirements and regulations

Traditional MLOps: "Code, data, models, action!"

MLOps = DevOps + DataOps + ModelOps

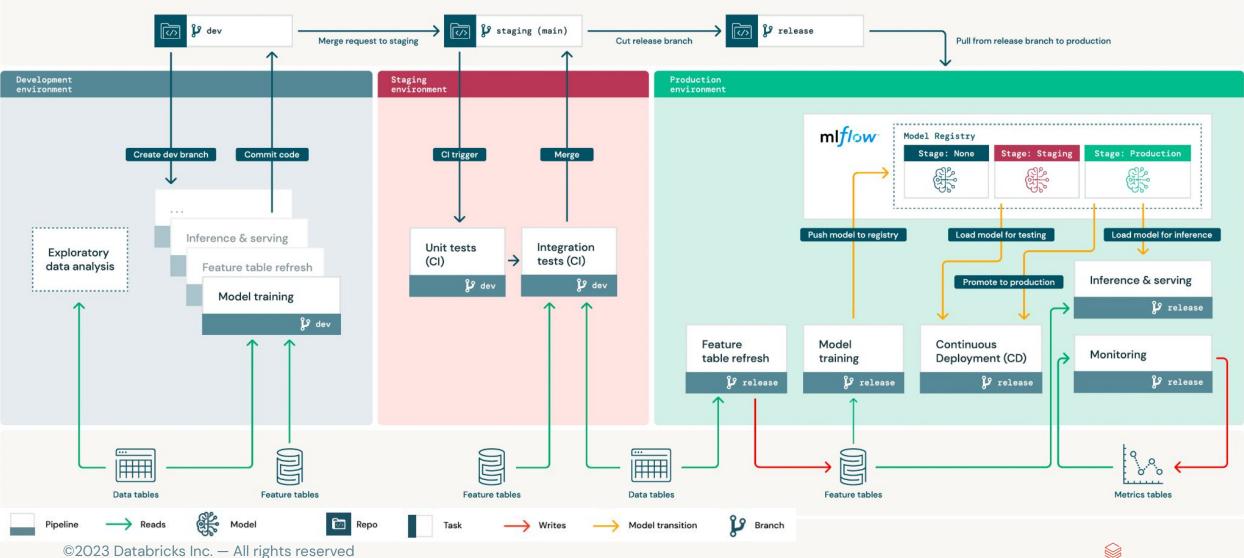
A set of processes and automation for managing ML code, data and models to improve performance and long-term efficiency

- Dev-staging-prod workflow
- Testing and monitoring
- CI/CD
- Model Registry

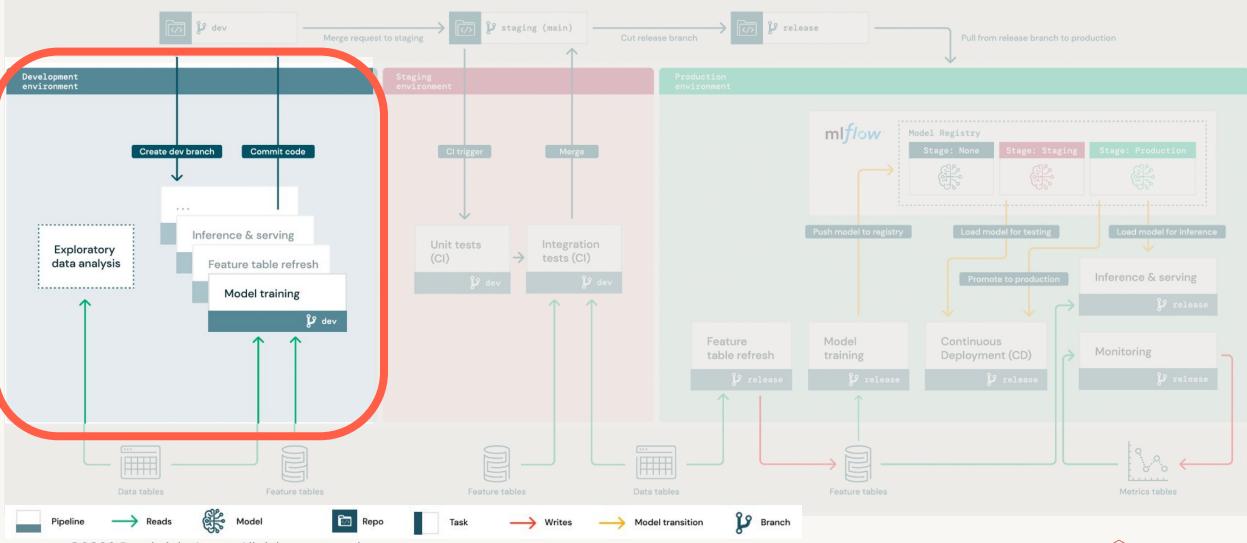
- Feature Store
- Automated model retraining
- Scoring pipelines and serving APIs

•

Traditional MLOps architecture



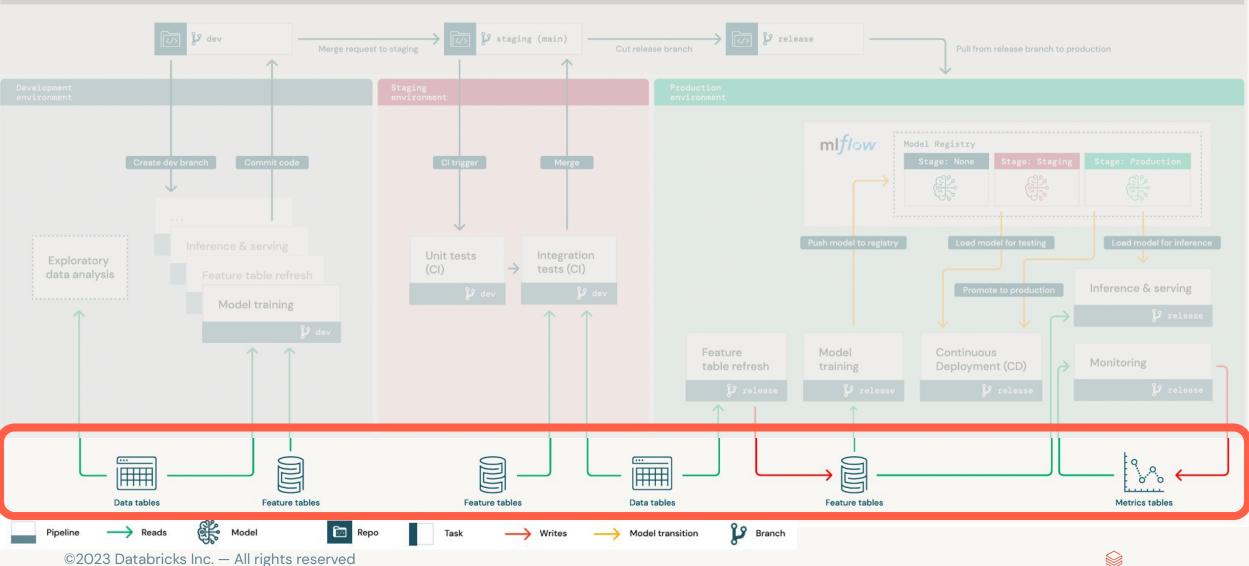
Traditional MLOps: Development environment



Traditional MLOps: Source control

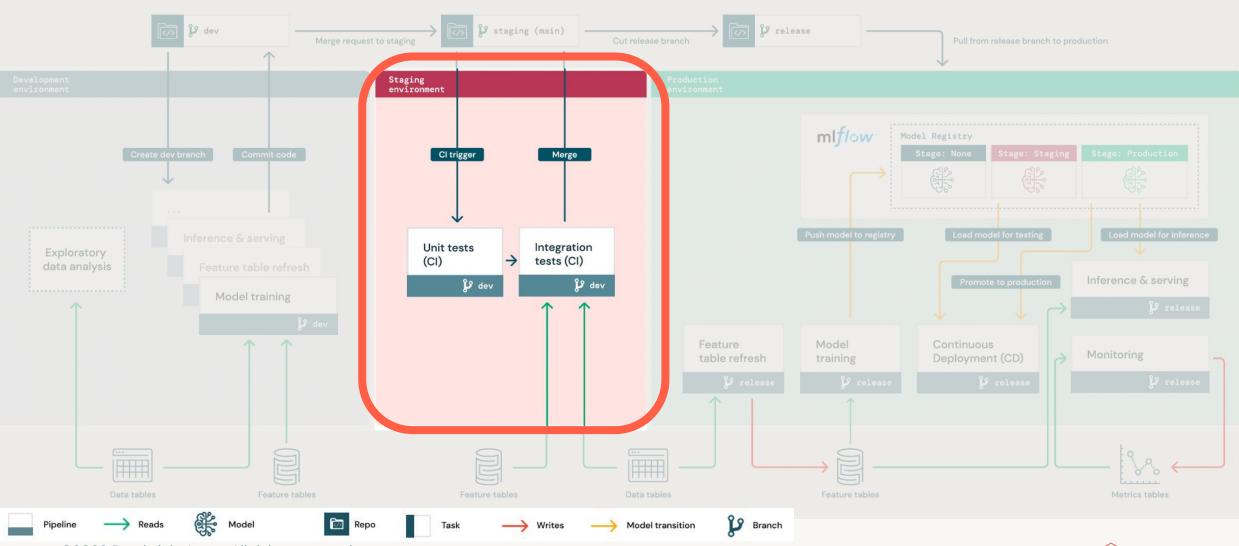
🎾 release 🔑 staging (main) $\overline{\langle n \rangle}$ 🕻 dev $\overline{(n)}$ 1 Merge request to staging Cut release branch Pull from release branch to production mlflow Model Registry Exploratory tests (CI) data analysis Inference & serving Model training Model Monitoring Branch ----> Reads Repo Pipeline Model Task Writes Model transition

Traditional MLOps: Data



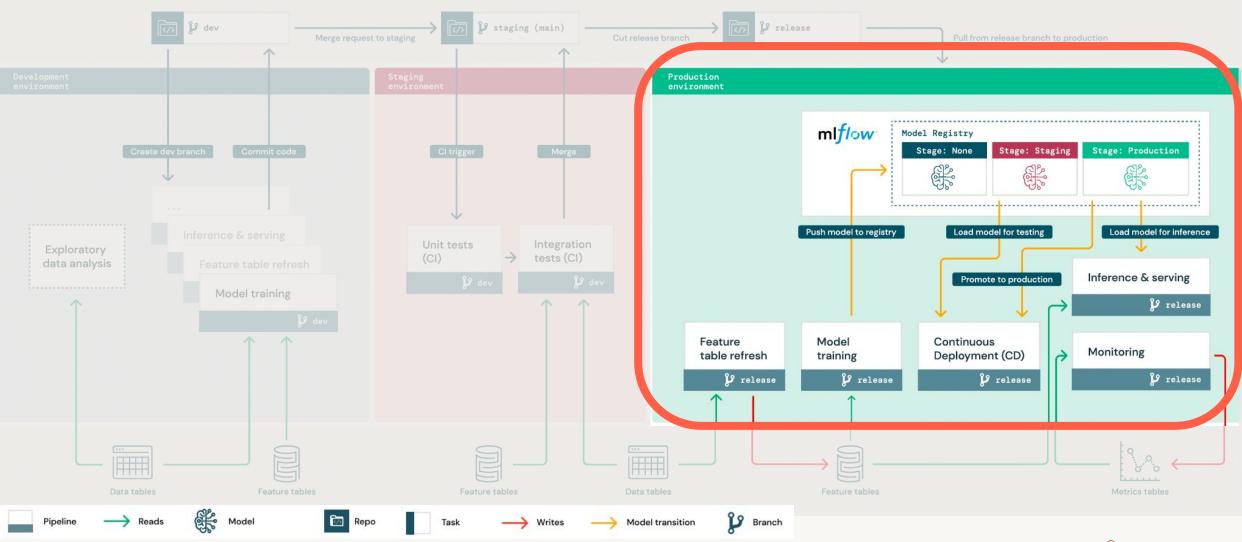
Traditional MLOps: Staging environment

Source control

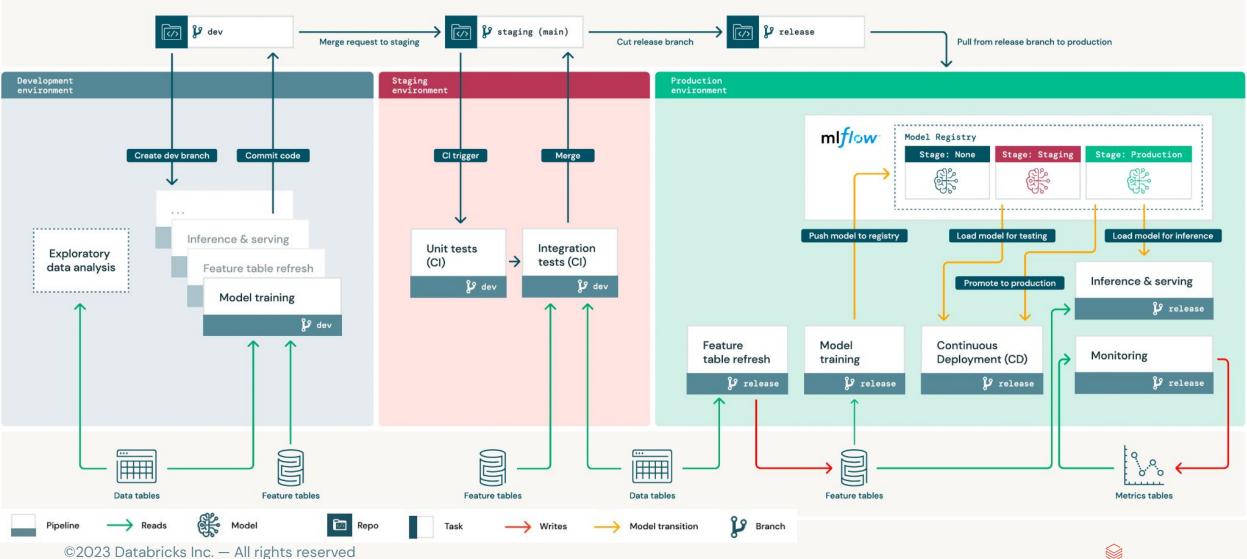


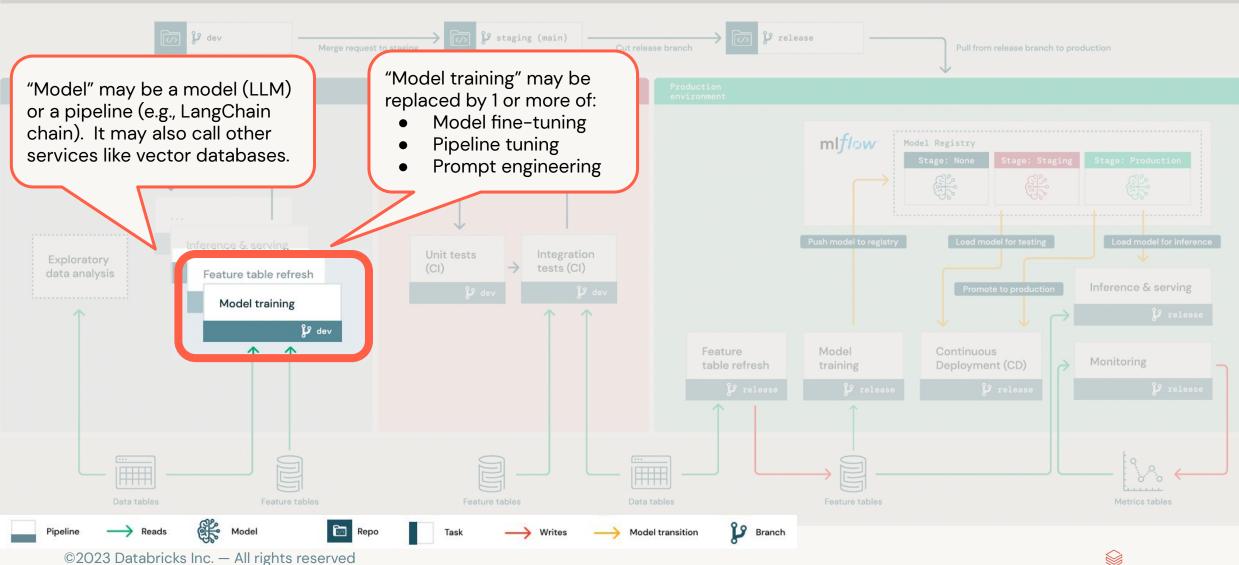
Traditional MLOps: Production environment

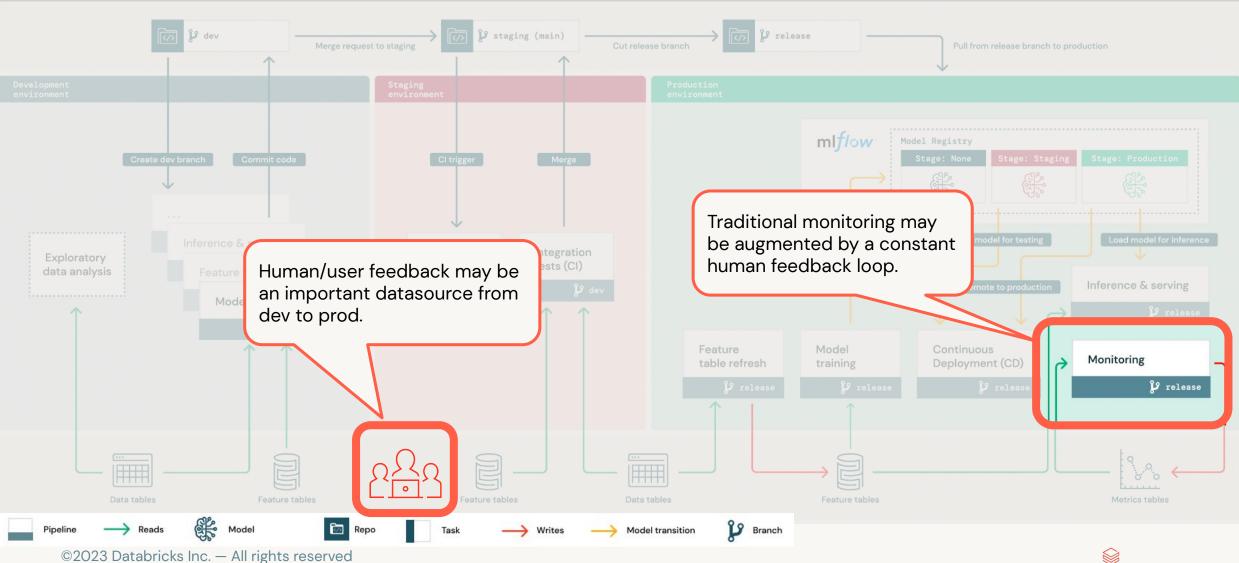
Source control

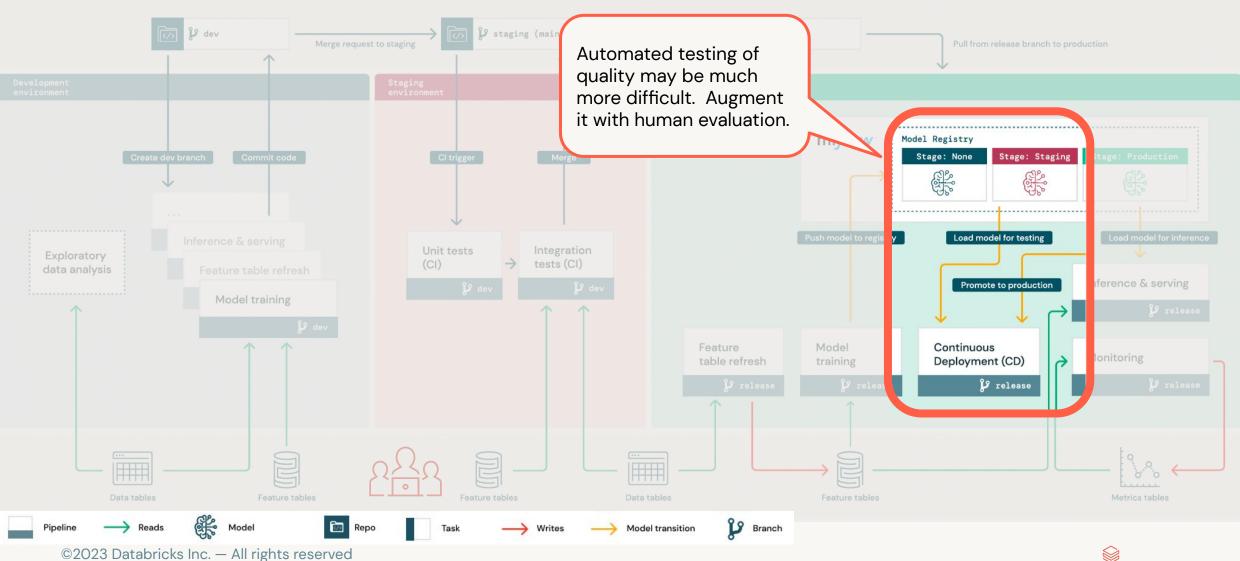


LLMOps: "How will LLMs change MLOps?"

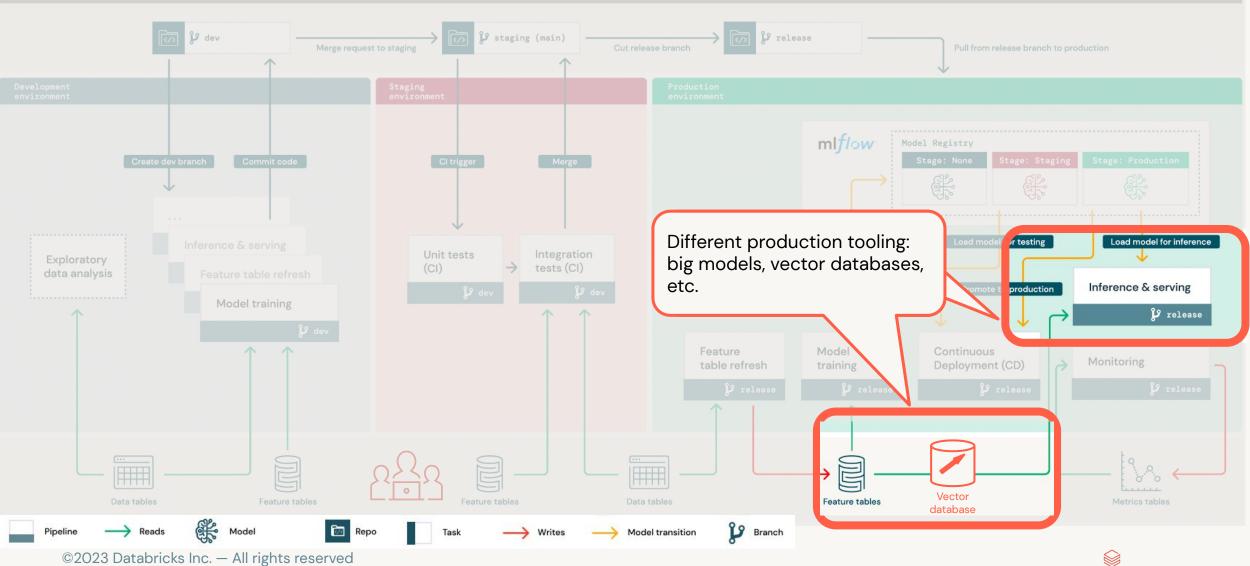


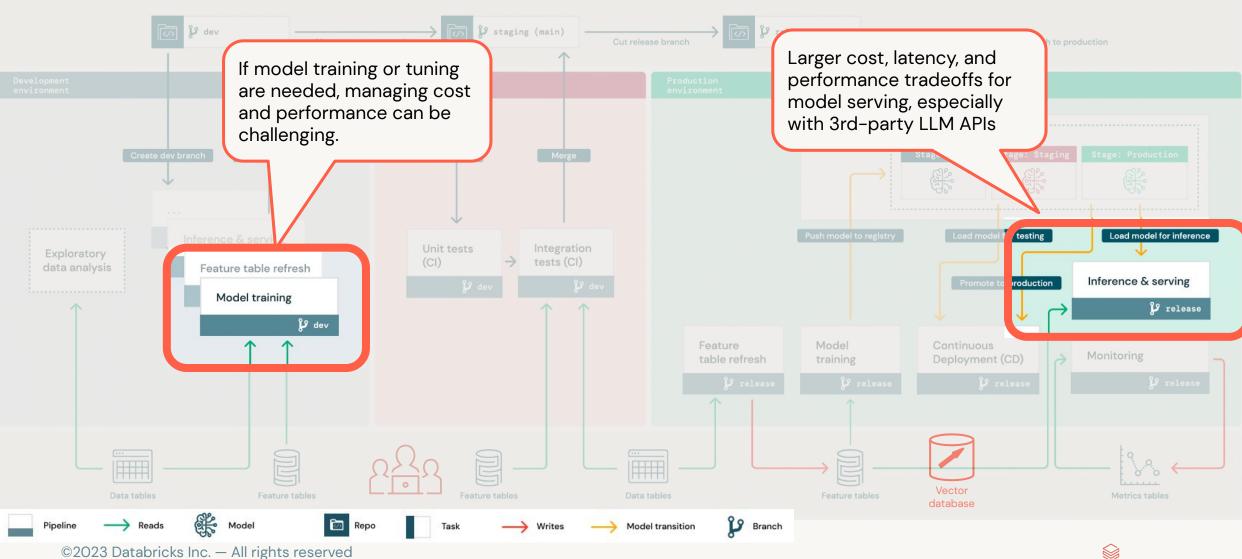






Source control

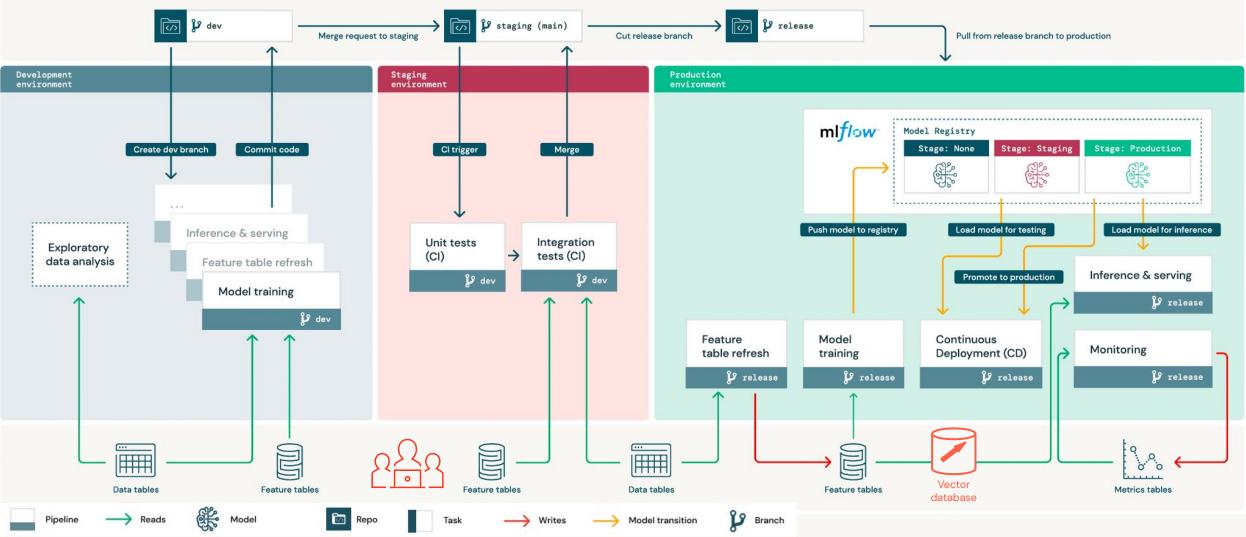




Some things change—but even more remain similar.

Adapting MLOps for LLMs-

Source control



LLMOps details: "Plan for key concerns which you may encounter with operating LLMs"

Key concerns

- Prompt engineering
- Packaging models or pipelines for deployment
- Scaling out
- Managing cost/performance tradeoffs
- Human feedback, testing, and monitoring
- Deploying models vs. deploying code
- Service infrastructure: vector databases and complex models

Prompt engineering

1. Track

Track queries and responses, compare, and iterate on prompts.

Example tools: <u>MLflow</u>

2. Template

Standardize prompt formats using tools for building templates.

Example tools: <u>LangChain</u>, <u>LlamaIndex</u>

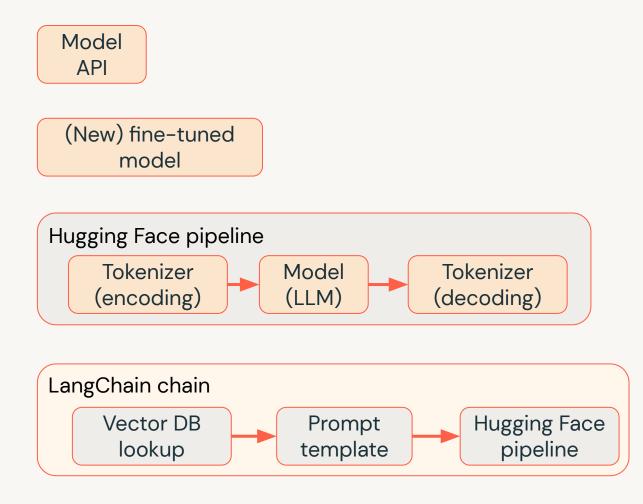
3. Automate

Replace manual prompt engineering with automated tuning.

Example tools: <u>DSP (Demonstrate-</u> <u>Search-Predict</u> <u>Framework</u>)

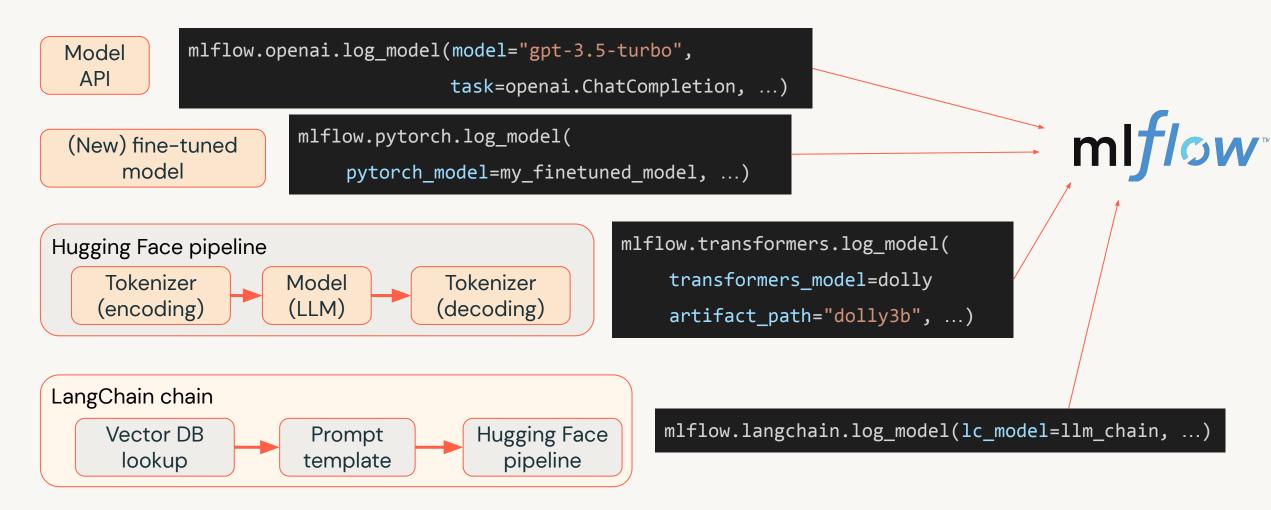
Packaging models or pipelines for deployment

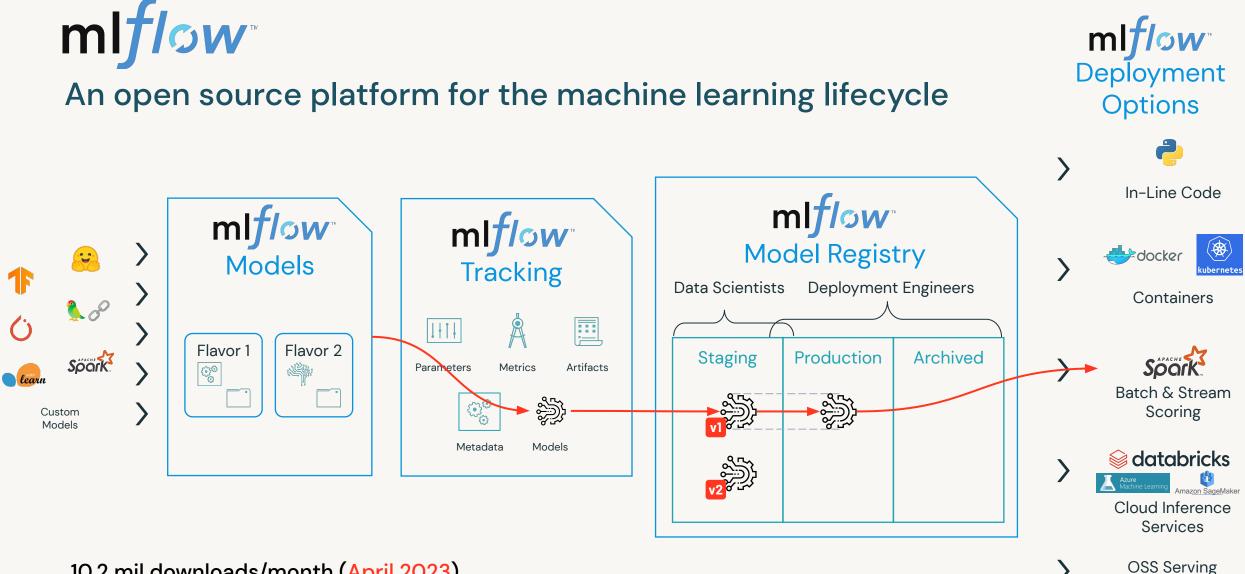
Standardizing deployment for many types of models and pipelines



Packaging models or pipelines for deployment

Standardizing deployment for many types of models and pipelines





More at <u>mlflow.org</u>, including info on LLM Tracking and MLflow Recipes.

Solutions

Real-time: scale out end points

• Streaming and batch: Scale out pipelines, e.g. Spark + Delta Lake

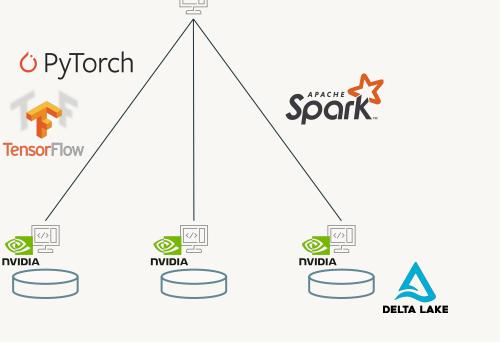
©2023 Databricks Inc. – All rights reserved

Scaling out Distribute computation for larger data and models

Fine-tuning and training

- Distributed Tensorflow
- Distributed PyTorch
- DeepSpeed
- Optionally run on Apache Spark, Ray, etc.

Serving and inference



Managing cost/performance tradeoffs

Metrics to optimize

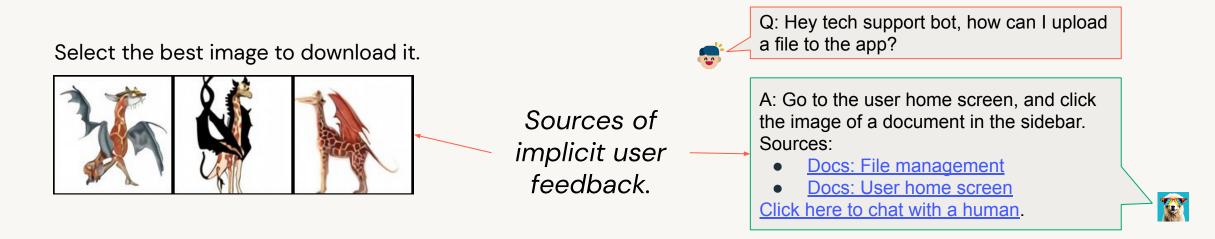
- Cost of queries and training
- Time for development
- ROI of the LLM-powered product
- Accuracy/metrics of model
- Query latency

Tips for optimizing

- Go simple to complex: Existing models \rightarrow Prompt engineering \rightarrow Fine-tuning
- Scope out costs.
- Reduce costs by tweaking models, queries, and configurations.
- Get human feedback.
- Don't over-optimize!

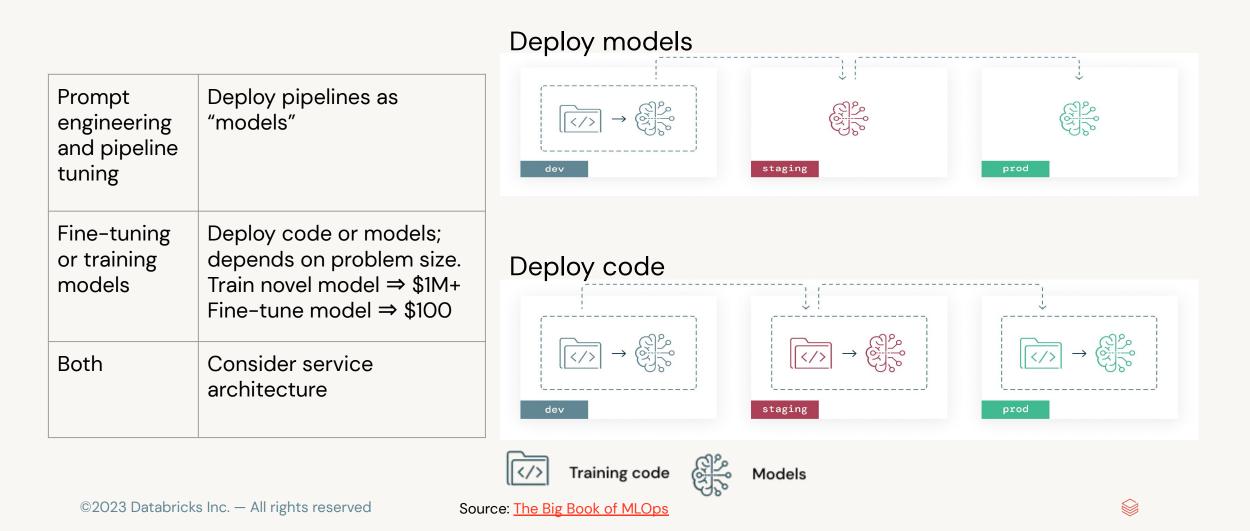
Human feedback, testing, and monitoring Human feedback is critical, so plan for it!

- Build human feedback into your application from the beginning.
- Operationally, human feedback should be treated like any other data: feed it into your Lakehouse to make it available for analysis and tuning.



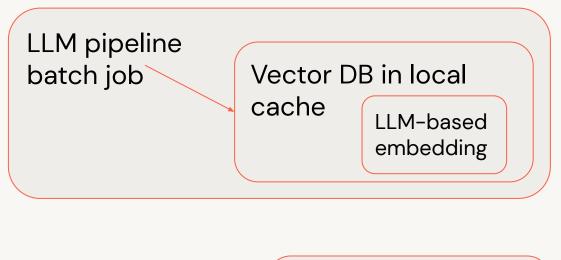
Deploying models vs. deploying code

What asset(s) move from dev to prod?



Service architecture

Vector databases



Complex models behind APIs

- Models have complex behavior and can be stochastic.
- How can you make these APIs stable and compatible?

LLM pipeline v1.0

LLM pipeline v1.1

What behavior would you expect?

- Same query, same model version
- Same query, updated model

Module Summary

LLMOps - What have we learned?

- LLMOps processes and automation help to ensure stable performance and long-term efficiency.
- LLMs put new requirements on MLOps platforms but many parts of Ops remain the same as with traditional ML.
- Tackle challenges in each step of the LLMOps process as needed.

Time for some code!