Module 3 Multi-stage Reasoning

Learning Objectives

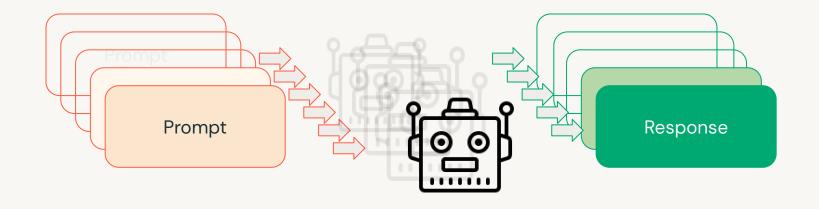
By the end of this module you will:

- Describe the flow of LLM pipelines with tools like LangChain.
- Apply LangChain to leverage multiple LLM providers such as OpenAI and Hugging Face.
- Create complex logic flow with agents in LangChain to pass prompts and use logical reasoning to complete tasks.

LLM Limitations LLMs are great at single tasks... but we want more!

LLM Tasks vs. LLM-based Workflows

LLMs can complete a huge array of challenging tasks.



Summarization

Sentiment analysis

Translation

Zero-shot classification

Few-shot learning

Conversation / chat

Question-answering

Table question-answering

Token classification

Text classification

Text generation

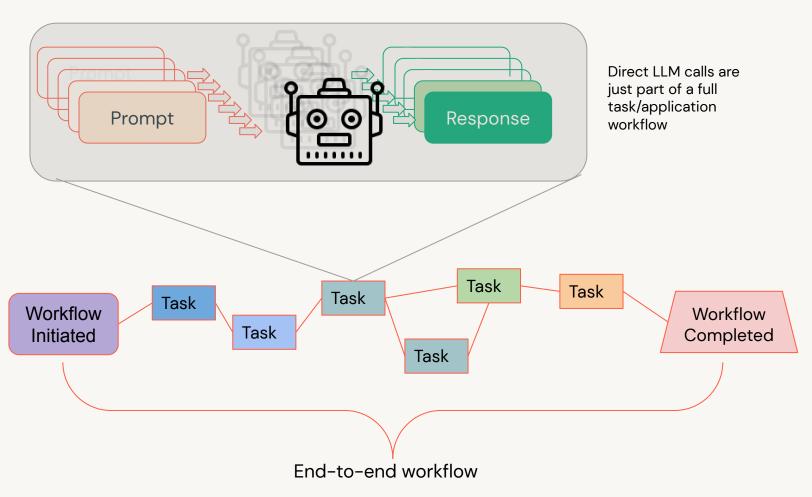
•••

LLM Tasks vs. LLM-based Workflows

Typical applications are more than just a prompt-response system.

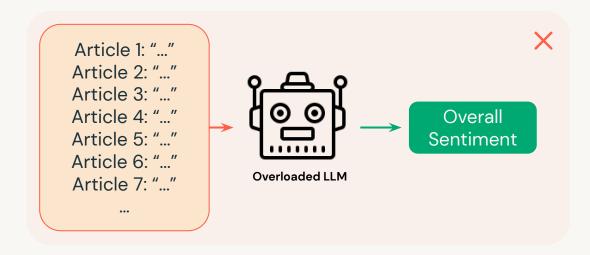
Tasks: Single interaction with an LLM

Workflow: Applications with more than a single interaction



Summarize and Sentiment

Example multi-LLM problem: get the sentiment of many articles on a topic

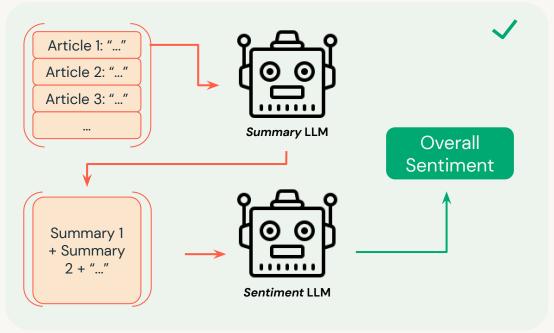


Initial solution

Put all the articles together and have the LLM parse it all

Issue

Can quickly overwhelm the model input length

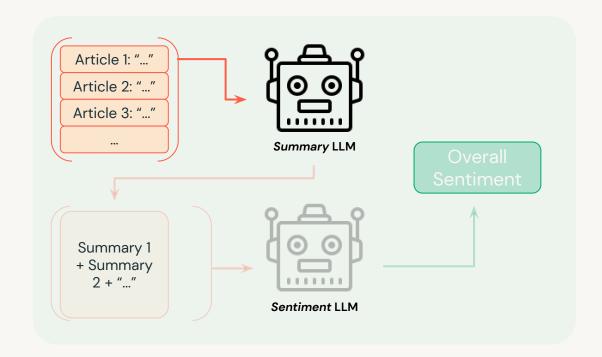


Better solution

A two-stage process to first summarize, then perform sentiment analysis.

Summarize and Sentiment

Step 1: Let's see how we can build this example.



Goal:

Create a reusable workflow for multiple articles.

For this we'll focus on the first task first.

How do we make this process systematic?

Prompt Engineering:

Crafting more elaborate prompts to get the most out of our LLM interactions

Prompt Engineering - Templating

Task: Summarization

```
# Example template for article summary
# The input text will be the variable {article}
summary_prompt_template = """
Summarize the following article, paying close attention to emotive phrases: {article}
Summary: """
```

{article} is the variable in the prompt template.

Prompt Engineering - Templating

Use generalized template for any article

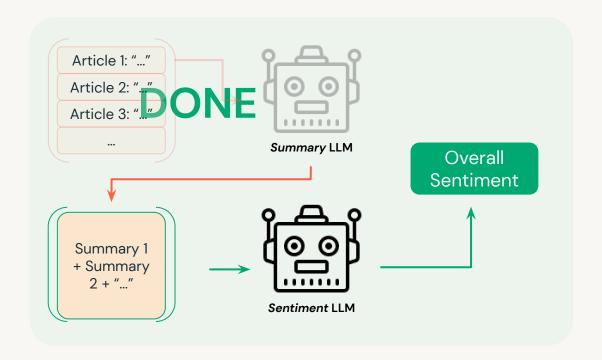
Prompt Engineering - Templating

We can create many prompt versions and feed them into LLMs

```
summary prompt template = """
Summarize the following article, paying close attention to emotive phrases: {article}
summary prompt = PromptTemplate(template = summary prompt template, input variables=["article"])
# To create an instance of this prompt with a specific article, we pass the article as an argument.
summary prompt(article=my article)
# Loop through all articles
for next article in articles:
  next_prompt = summary_prompt(article=next_article)
  summary = llm(next_prompt)
```

Multiple LLM interactions in a sequence

Chain prompt outputs as input to LLM



Now we need the **output** from our new engineered prompts to be the **input** to the sentiment analysis LLM.

For this we're going to **chain** together these LLMs.

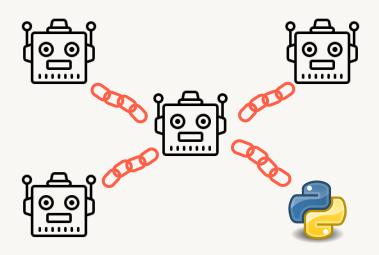
LLM Chains:

Linking multiple LLM interactions to build complexity and functionality

LLM Extension Libraries

- Released in late 2022
- Useful for multi-stage reasoning,
 LLM-based workflows

Image source: star-history.com





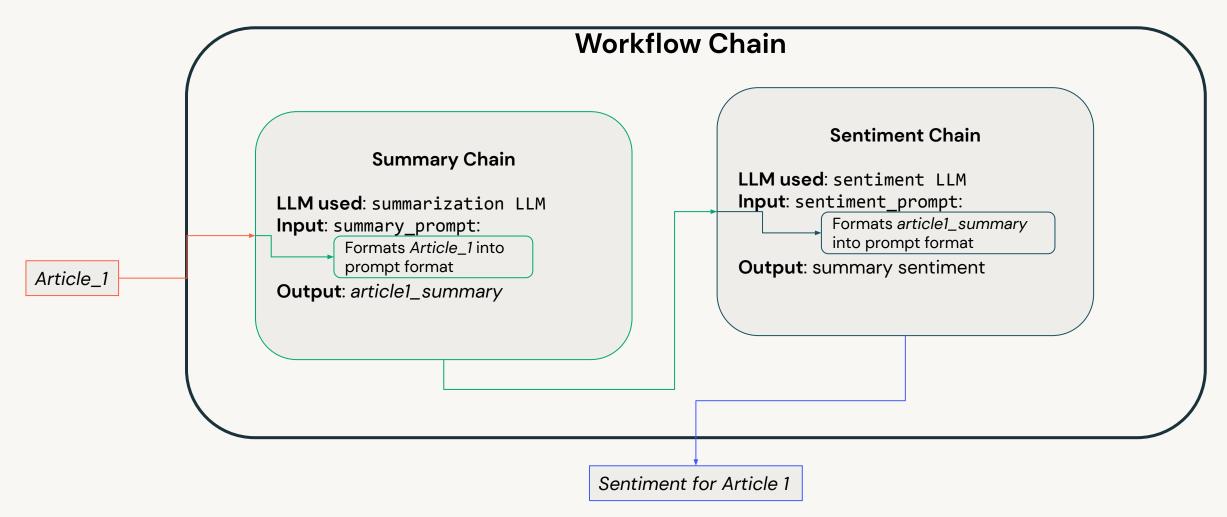
Multi-stage LLM Chains

Build a sequential flow: article summary output feeds into a sentiment LLM

```
# Firstly let's create our two llms
summary llm = summarize()
sentiment llm = sentiment()
# We will also need another prompt template like before, a new sentiment prompt
sentiment prompt template = """
Evaluate the sentiment of the following summary: {summary}
Sentiment: """
# As before we create our prompt using this template
sentiment_prompt = PromptTemplate(template=sentiment_prompt_template, input_variable=["summary"])
```

Multi-stage LLM Chains

Let's look at the logic flow of this LLM Chain



Chains with non-LLM tools?

Example: LLMMath in LangChain

Q: How to make an LLMChain that evaluates mathematical questions?

- The LLM needs to take in the question and return executable code
- 2. Need to add an evaluation tool for correctness

Source: python.langchain.com

3. The results need to be passed back

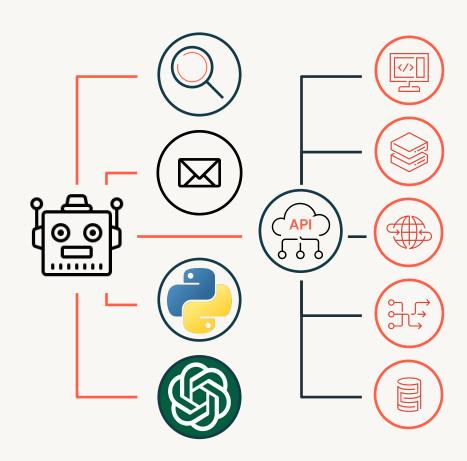
```
class LLMMathChain(Chain):
   """Chain that interprets a prompt and executes python code
to do math."""
                                                   Python library
                                                   'numexpr' used to
                                                   evaluate the
                                                   numerical expression
   def _evaluate_expression(expression) 2
       output = str( numexpr.evaluate(expression))
   def process_llm_result(llm_output):
       text match = re.search(r"^```text(.*?)```", llm_output,
                                      LLM response is checked for code
re.DOTALL)
                                      snippets that typically have a ```
                                      code ``` format in most training
       if text match:
                                      datasets
            output = self. evaluate expression(text match)
                             "_call()" function controls
                             the logic of this custom
                            LLMChain
   def call(input,llm):
       llm executor = LLMChain(prompt=input, llm=llm)
       llm output = llm(input)
       return process llm result(llm output)
```

Going ever further

What if we want to use our LLM results to do more?

- Search the web
- Interact with an API
- Run more complex python code
- Send emails
- Even make more versions of itself!
- •

For this, we will look at toolkits and agents!



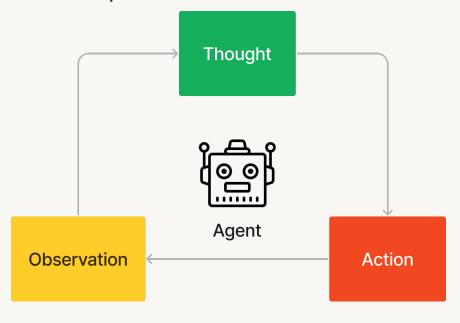
Agents:

Giving LLMs the ability to delegate tasks to specified tools.

LLM Agents

Building reasoning loops

Agents are LLM-based systems that execute the **Re**ason**Act**ion loop.



```
Simplified code
def plan():
                                                                           from the LangChain
"""Given input, decided what to do.
                                                                              Agent Source
intermediate steps: Steps the LLM has taken to date, along with observations
 output = self.llm chain.run(intermediate steps=intermediate steps)
 return self.output_parser.parse(output)
def take next step(): """Take a single step in the thought-action-observation loop."""
 # Call the LLM to see what to do.
 output = self.agent.plan(intermediate steps, **inputs)
 # If the tool chosen is the finishing tool, then we end and return.
 for agent action in actions:
     self.callback manager.on agent action(agent action)
    # Otherwise we lookup the tool. Call the tool input to get an observation
    observation = tool.run(agent action.tool input)
def call(): """Run text through and get agent response."""
iterations = 0
# We now enter the agent loop (until it returns something).
while self. should continue():
    next step output = take next step(name to tool map, .., inputs, intermediate steps)
    iterations += 1
    output = self.agent.return_stopped_response(intermediate_steps, **inputs)
    return self. return(output, intermediate steps)
```

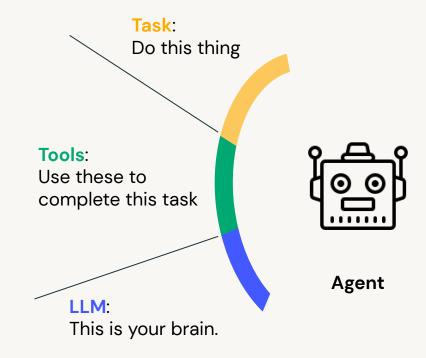
LLM Agents

Building reasoning loops with LLMs

To solve the task assigned, agents make use of two key components:

An LLM as the reasoning/decision making entity.

A set of tools that the LLM will select and execute to perform steps to achieve the task.



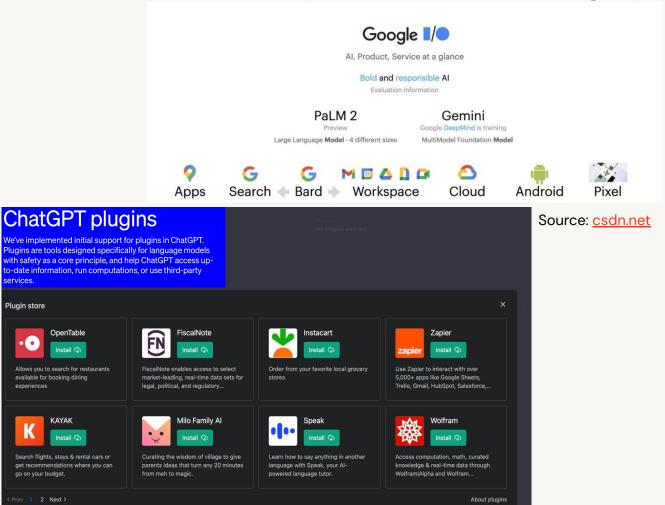
```
tools = load_tools([Google Search,Python Interpreter])
agent = initialize_agent(tools, llm)
agent.run("In what year was Isaac Newton born? What is
that year raised to the power of 0.3141?"))
```

Simplified code from the LangChain Agent

LLM Plugins are coming

LangChain was first to show LLMs+tools. But companies are catching up!

Source: Twitter.com



Source: arstechnica.com

ervices. Plugin store

available for booking dining

Search flights, stays & rental cars or

go on your budget

Prev 1 2 Next >

OpenAl and ChatGPT Plugins

OpenAl acknowledged the open-sourced community moving in similar directions

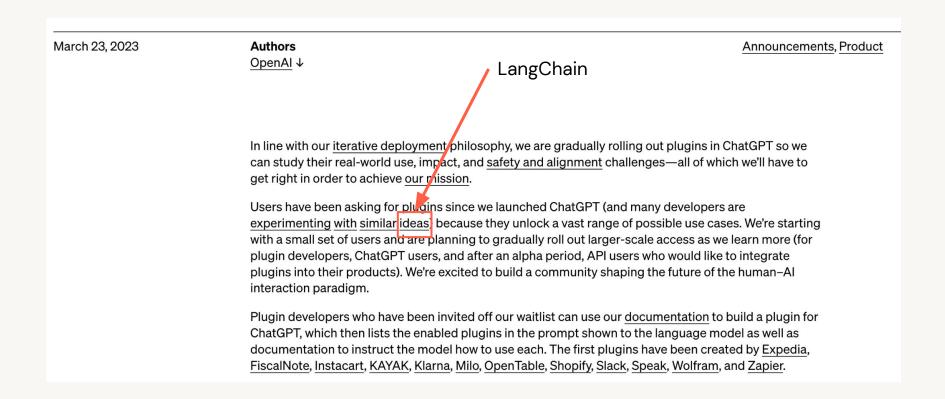


Image source: openai.com

Automating plugins: self-directing agents

<u>AutoGPT</u> (early 2023) gains notoriety for using GPT-4 to create copies of itself

- Used self-directed format
- Created copies to perform any tasks needed to respond to prompts

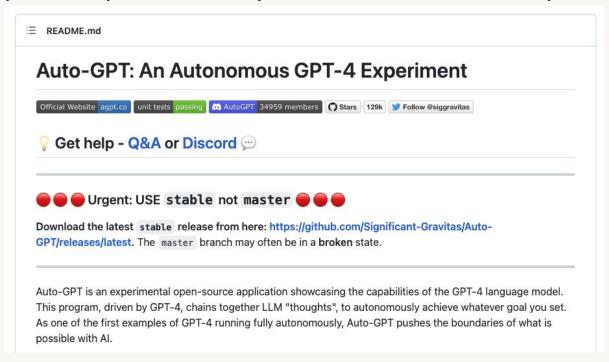


Image source: GitHub

Multi-stage Reasoning Landscape

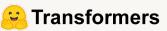
Guided

SaaS to perform tasks with LLM agents using low/no-code approaches

Al21 labs Al21

Tools used to create predictable steps to solve tasks with LLM agents

Open Source



HF transformers Agents

Proprietary

BabvAGI AutoGPT

> OSS self-guided LLM-based agents

SaaS to perform tasks with LLM self-directing agents using low/no-code approaches

Unguided

Module Summary

Multi-stage Reasoning - What have we learned?

- LLM Chains help incorporate LLMs into larger workflows, by connecting prompts, LLMs, and other components.
- LangChain provides a wrapper to connect LLMs and add tools from different providers.
- LLM agents help solve problems by using models to plan and execute tasks.
- Agents can help LLMs communicate and delegate tasks.

Time for some code!

