
© Databricks Inc. — All rights reserved

Module 3
Multi-stage Reasoning

© Databricks Inc. — All rights reserved

Learning Objectives
By the end of this module you will:

• Describe the flow of LLM pipelines with tools like LangChain.

• Apply LangChain to leverage multiple LLM providers such as OpenAI and Hugging Face.

• Create complex logic flow with agents in LangChain to pass prompts and use logical
reasoning to complete tasks.

© Databricks Inc. — All rights reserved

LLM Limitations
LLMs are great at single tasks… but we
want more!

© Databricks Inc. — All rights reserved

LLM Tasks vs. LLM-based Workflows
LLMs can complete a huge array of challenging tasks.

Summarization

Sentiment analysis

Translation

Zero-shot classification

Few-shot learning

Conversation / chat

Question-answering

Table question-answering

Token classification

Text classification

Text generation

…

Image source: mrvian.com

Prompt Response
Prompt Response

Prompt Response
Prompt Response

Prompt Response

https://mrvian.com/wp-content/uploads/2023/02/logo-open-ai.png

© Databricks Inc. — All rights reserved

LLM Tasks vs. LLM-based Workflows
Typical applications are more than just a prompt-response system.

Tasks: Single interaction
with an LLM

Workflow: Applications
with more than a single
interaction

Prompt
Respon

sePrompt
Respon

sePrompt
Respon

sePrompt ResponsePrompt Response

TaskTask

Task

Task

Task

Task
Workflow

Completed
Workflow
Initiated

Direct LLM calls are
just part of a full
task/application
workflow

End-to-end workflow

© Databricks Inc. — All rights reserved

Initial solution
Put all the articles together and have the

LLM parse it all

Issue
Can quickly overwhelm the model input length

Summarize and Sentiment
Example multi-LLM problem: get the sentiment of many articles on a topic

Better solution
A two-stage process to first summarize, then

perform sentiment analysis.

Article : “...”
Article : “...”
Article : “...”
Article : “...”
Article : “...”
Article : “...”
Article : “...”

…

Overall
Sentiment

Overloaded LLM

Article : “...”

Article : “...”

Article : “...”

…

Summary
+ Summary

 + “...”

Summary LLM

Sentiment LLM

Overall
Sentiment

© Databricks Inc. — All rights reserved

Summarize and Sentiment
Step 1: Let’s see how we can build this example.

Goal:
Create a reusable workflow for multiple articles.

For this we’ll focus on the first task first.

How do we make this process systematic?

Article : “...”

Article : “...”

Article : “...”

…

Summary
+ Summary

 + “...”

Summary LLM

Sentiment LLM

Overall
Sentiment

© Databricks Inc. — All rights reserved

Prompt Engineering:
Crafting more elaborate prompts to get
the most out of our LLM interactions

© Databricks Inc. — All rights reserved

Prompt Engineering - Templating

{article} is the variable in the prompt template.

Example template for article summary

The input text will be the variable {article}

summary_prompt_template = """

Summarize the following article, paying close attention to emotive phrases: {article}

Summary: """

Task: Summarization

© Databricks Inc. — All rights reserved

Prompt Engineering - Templating

Example template for summarization

The input text will be the variable {article}

summary_prompt_template = """

Summarize the following article, paying close attention to emotive phrases: {article}

Summary: """

###

Now, construct an engineered prompt that takes two parameters: template and a list of input variables

(article)

summary_prompt = PromptTemplate(template=summary_prompt_template, input_variables=["article"])

Use generalized template for any article

© Databricks Inc. — All rights reserved

Prompt Engineering - Templating
We can create many prompt versions and feed them into LLMs
Example template for summarization

The input text will be the variable {article}

summary_prompt_template = """

Summarize the following article, paying close attention to emotive phrases: {article}

Summary: """

###

Now, construct an engineered prompt that takes two parameters: template and a list of input variables

(article)

summary_prompt = PromptTemplate(template = summary_prompt_template, input_variables=["article"])

###

To create an instance of this prompt with a specific article, we pass the article as an argument.

summary_prompt(article=my_article)

Loop through all articles

for next_article in articles:

 next_prompt = summary_prompt(article=next_article)

 summary = llm(next_prompt)

© Databricks Inc. — All rights reserved

DONE

Multiple LLM interactions in a sequence
Chain prompt outputs as input to LLM

Now we need the output from
our new engineered prompts to
be the input to the sentiment
analysis LLM.

For this we’re going to chain
together these LLMs.

Article : “...”

Article : “...”

Article : “...”

…

Summary
+ Summary

 + “...”

Summary LLM

Sentiment LLM

Overall
Sentiment

© Databricks Inc. — All rights reserved

LLM Chains:
Linking multiple LLM interactions to
build complexity and functionality

© Databricks Inc. — All rights reserved

LLM Extension Libraries

• Released in late
• Useful for multi-stage reasoning,

LLM-based workflows

Image source: star-history.com

https://star-history.com/#hwchase17/langchain&Timeline

© Databricks Inc. — All rights reserved

Multi-stage LLM Chains

Firstly let’s create our two llms

summary_llm = summarize()

sentiment_llm = sentiment()

We will also need another prompt template like before, a new sentiment prompt

sentiment_prompt_template = """

Evaluate the sentiment of the following summary: {summary}

Sentiment: """

As before we create our prompt using this template

sentiment_prompt = PromptTemplate(template=sentiment_prompt_template, input_variable=["summary"])

Build a sequential flow: article summary output feeds into a sentiment
LLM

© Databricks Inc. — All rights reserved

Multi-stage LLM Chains

Summary Chain

LLM used: summarization LLM
Input: summary_prompt:

Output: article1_summary
Article_1

Formats Article_1 into
prompt format

Sentiment Chain

LLM used: sentiment LLM
Input: sentiment_prompt:

Output: summary sentiment

Formats article1_summary
into prompt format

Workflow Chain

Sentiment for Article 1

Let’s look at the logic flow of this LLM Chain

© Databricks Inc. — All rights reserved

Chains with non-LLM tools?

Q: How to make an LLMChain that
evaluates mathematical questions?

. The LLM needs to take in the
question and return executable
code

. Need to add an evaluation tool for
correctness

. The results need to be passed
back

Example: LLMMath in LangChain class LLMMathChain(Chain):

 """Chain that interprets a prompt and executes python code

to do math."""

 def _evaluate_expression(expression):

 output = str(numexpr.evaluate(expression))

 def process_llm_result(llm_output):

 text_match = re.search(r"^```text(.*?)```", llm_output,

re.DOTALL)

 if text_match:

 output = self._evaluate_expression(text_match)

 def _call(input,llm):

 llm_executor = LLMChain(prompt=input, llm=llm)

 llm_output = llm(input)

 return process_llm_result(llm_output)

LLM response is checked for code
snippets that typically have a ```
code ``` format in most training
datasets

Python library
`numexpr` used to
evaluate the
numerical expression

“_call()” function controls
the logic of this custom
LLMChain

Source: python.langchain.com

https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html#LLMMathChain

© Databricks Inc. — All rights reserved

Going ever further

• Search the web
• Interact with an API
• Run more complex python code
• Send emails
• Even make more versions of itself!
• ……

For this, we will look at toolkits and agents!

What if we want to use our LLM results to do more?

API

© Databricks Inc. — All rights reserved

Agents:
Giving LLMs the ability to delegate tasks
to specified tools.

© Databricks Inc. — All rights reserved

def plan():

"""Given input, decided what to do.

intermediate_steps: Steps the LLM has taken to date, along with observations

"""

 output = self.llm_chain.run(intermediate_steps=intermediate_steps)

 return self.output_parser.parse(output)

def take_next_step() : """Take a single step in the thought-action-observation loop."""

 # Call the LLM to see what to do.

 output = self.agent.plan(intermediate_steps, **inputs)

 # If the tool chosen is the finishing tool, then we end and return.

 for agent_action in actions:

 self.callback_manager.on_agent_action(agent_action)

 # Otherwise we lookup the tool. Call the tool input to get an observation

 observation = tool.run(agent_action.tool_input)

def call(): """Run text through and get agent response."""

 iterations = 0

 # We now enter the agent loop (until it returns something).

 while self._should_continue():

 next_step_output = take_next_step(name_to_tool_map, .., inputs, intermediate_steps)

 iterations += 1

 output = self.agent.return_stopped_response(intermediate_steps, **inputs)

 return self._return(output, intermediate_steps)

LLM Agents
Building reasoning loops

Agents are LLM-based systems

that execute the ReasonAction

loop.

Simplified code
from the LangChain

Agent Source

https://github.com/hwchase17/langchain/blob/master/langchain/agents/agent.py
https://github.com/hwchase17/langchain/blob/master/langchain/agents/agent.py
https://github.com/hwchase17/langchain/blob/master/langchain/agents/agent.py

© Databricks Inc. — All rights reserved

LLM Agents
Building reasoning loops with LLMs

To solve the task assigned, agents
make use of two key components:

An LLM as the reasoning/decision
making entity.

A set of tools that the LLM will select
and execute to perform steps to
achieve the task.

Task:
Do this thing

Tools:
Use these to
complete this task

LLM:
This is your brain.

Agent

Simplified code from
the LangChain Agent

tools = load_tools([Google Search,Python Interpreter])

agent = initialize_agent(tools, llm)

agent.run("In what year was Isaac Newton born? What is

that year raised to the power of 0.3141?"))

https://python.langchain.com/en/latest/modules/agents/getting_started.html
https://python.langchain.com/en/latest/modules/agents/getting_started.html

© Databricks Inc. — All rights reserved

LLM Plugins are coming

Source: arstechnica.com

LangChain was first to show LLMs+tools. But companies are catching up!

Source: csdn.net

Source: Twitter.com

https://arstechnica.com/information-technology/2023/03/chatgpt-gets-eyes-and-ears-with-plugins-that-can-interface-ai-with-the-world/
https://blog.csdn.net/csdnnews/article/details/130615078
https://twitter.com/huggingface/status/1656334778407297027?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Etweet

© Databricks Inc. — All rights reserved

OpenAI and ChatGPT Plugins

LangChain

Image source: openai.com

OpenAI acknowledged the open-sourced community moving in similar
directions

https://platform.openai.com/docs/plugins/introduction

© Databricks Inc. — All rights reserved

Automating plugins: self-directing agents

• Used self-directed format
• Created copies to perform any tasks needed to respond to prompts

Image source: GitHub

AutoGPT (early 2023) gains notoriety for using GPT-4 to create copies of
itself

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

© Databricks Inc. — All rights reserved

Multi-stage Reasoning Landscape

Open Source

ChatGPT
plugins

Guided

LangChain

AutoGPT

Unguided

Proprietary

Dust.tt

AI

BabyAGIHuggingGPT/Jarvis

Tools used to create
predictable steps to solve
tasks with LLM agents

SaaS to perform tasks
with LLM agents using
low/no-code approaches

SaaS to perform tasks
with LLM self-directing
agents using low/no-code
approaches

OSS self-guided
LLM-based agents

HF transformers Agents

https://platform.openai.com/docs/plugins/introduction
https://platform.openai.com/docs/plugins/introduction
https://python.langchain.com/en/latest/index.html
https://github.com/Significant-Gravitas/Auto-GPT
https://dust.tt/
https://studio.ai21.com/
https://github.com/yoheinakajima/babyagi
https://huggingface.co/spaces/microsoft/HuggingGPT
https://huggingface.co/docs/transformers/transformers_agents

© Databricks Inc. — All rights reserved

Module Summary

• LLM Chains help incorporate LLMs into larger workflows, by connecting
prompts, LLMs, and other components.

• LangChain provides a wrapper to connect LLMs and add tools from
different providers.

• LLM agents help solve problems by using models to plan and
execute tasks.

• Agents can help LLMs communicate and delegate tasks.

Multi-stage Reasoning - What have we learned?

© Databricks Inc. — All rights reserved

Time for some code!

