Module 2 Embeddings, Vector Databases, and Search

Learning Objectives

By the end of this module you will:

- Understand vector search strategies and how to evaluate search results
- Understand the utility of vector databases
- Differentiate between vector databases, vector libraries, and vector plugins
- Learn best practices for when to use vector stores and how to improve search-retrieval performance

How do language models learn knowledge?

Through model training or fine-tuning

- Via model weights
- More on fine-tuning in Module 4

Through model inputs

- Insert knowledge or context into the input
- Ask the LM to incorporate the context in its output

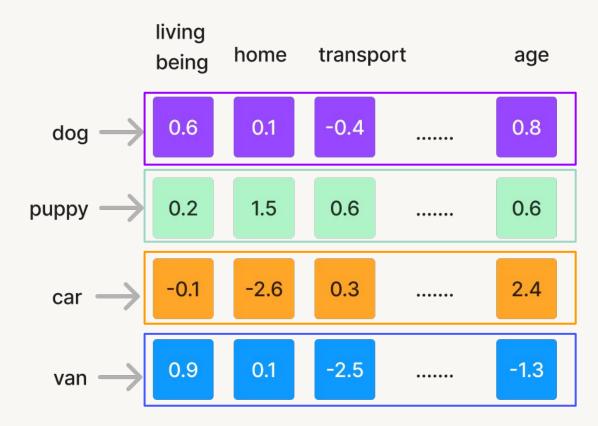
This is what we will cover:

• How do we use vectors to **search** and provide **relevant context** to LMs?

Passing context to LMs helps factual recall

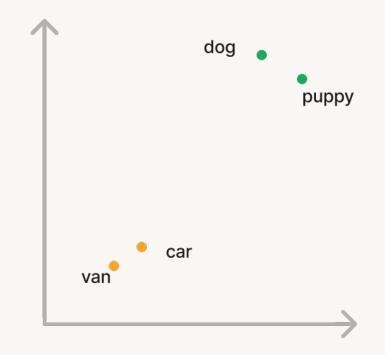
- Fine-tuning is *usually* better-suited to teach a model specialized tasks
 - Analogy: Studying for an exam 2 weeks away
- Passing context as model inputs improves factual recall
 - Analogy: Take an exam with open notes
 - Downsides:
 - Context length limitation
 - E.g., OpenAl's gpt-3.5-turbo accepts a maximum of ~4000 tokens (~5 pages) as context
 - Common mitigation method: pass document summaries instead
 - <u>Anthropic's Claude</u>: 100k token limit
 - An ongoing research area (<u>Pope et al 2022</u>, <u>Fu et al 2023</u>)
 - Longer context = higher API costs = longer processing times

Refresher: We represent words with vectors

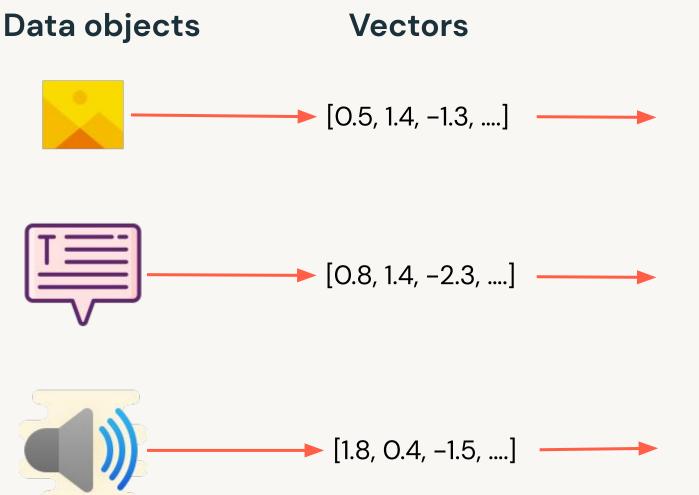


word N-dimensional word vectors/embeddings

We can project these vectors onto 2D to see how they relate graphically



Turn images and audio into vectors too



Tasks

- Object recognition
- Scene detection
- Product search
- Translation
- Question Answering
- Semantic search
- Speech to text
- Music transcription
- Machinery malfunction

Use cases of vector databases

- Similarity search: text, images, audio
 - De-duplication
 - **Semantic** match, rather than keyword match!
 - Example on enhancing product search
 - Very useful for knowledge-based Q/A
- Recommendation engines
 - <u>Example blog post</u>: Spotify uses vector search to recommend podcast episodes
- Finding security threats
 - Vectorizing virus binaries and finding anomalies

Shared embedding space for queries and podcast episodes

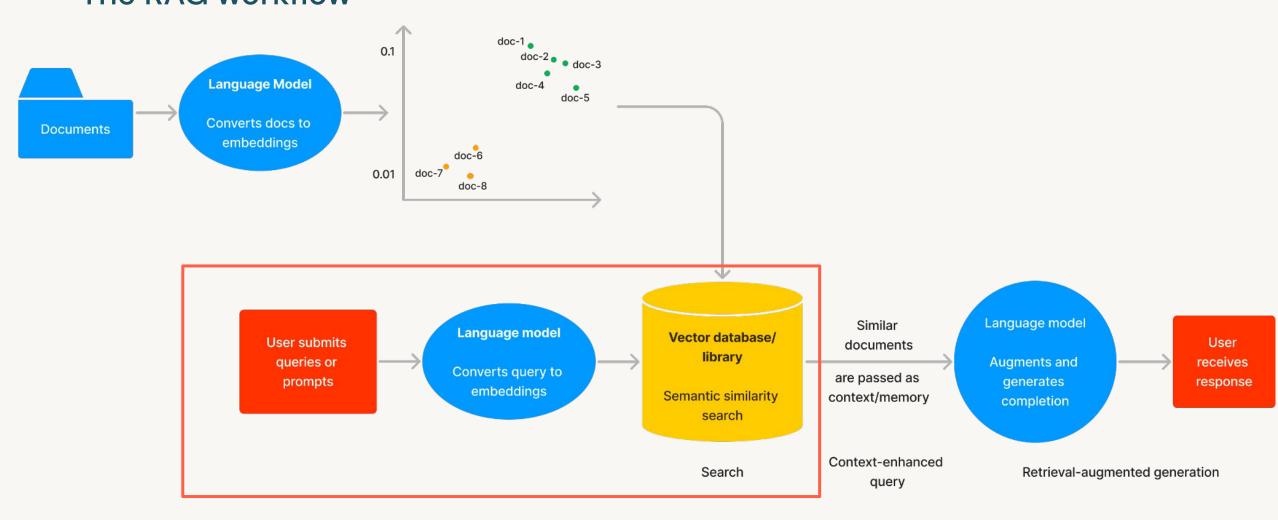
Source: <u>Spotify</u>

Search and Retrieval-Augmented Generation

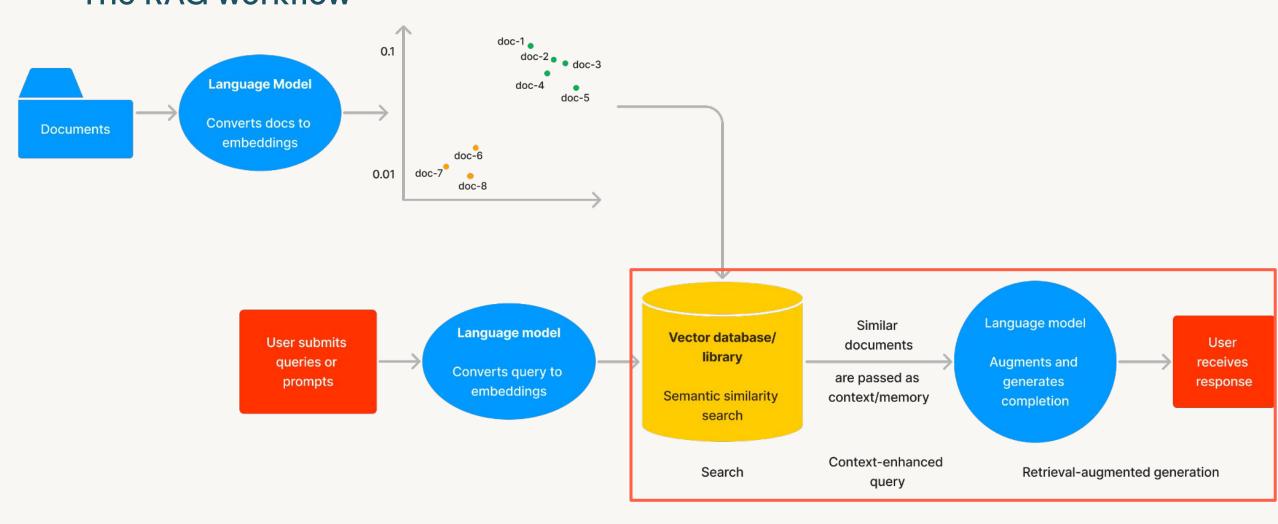
The RAG workflow



Search and Retrieval-Augmented Generation



Search and Retrieval–Augmented Generation

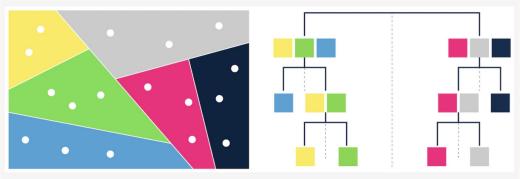


How does vector search work?

©2023 Databricks Inc. – All rights reserved

Vector search strategies

- K-nearest neighbors (KNN)
- Approximate nearest neighbors (ANN)
 - Trade accuracy for speed gains
 - Examples of indexing algorithms:
 - Tree-based: <u>ANNOY</u> by Spotify
 - Proximity graphs: <u>HNSW</u>
 - Clustering: <u>FAISS</u> by Facebook
 - Hashing: <u>LSH</u>
 - Vector compression: <u>SCaNN</u> by Google



[Figure 3 - Tree-based ANN search]

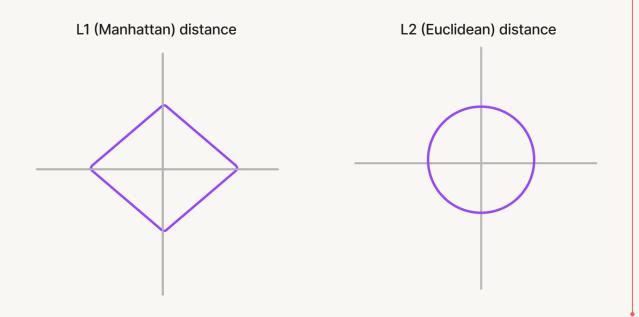
Source: Weaviate

How to measure if 2 vectors are similar?

L2 (Euclidean) and cosine are most popular

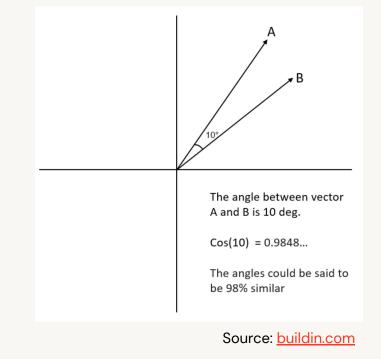
Distance metrics

The higher the metric, the less similar



Similarity metrics

The higher the metric, the more similar



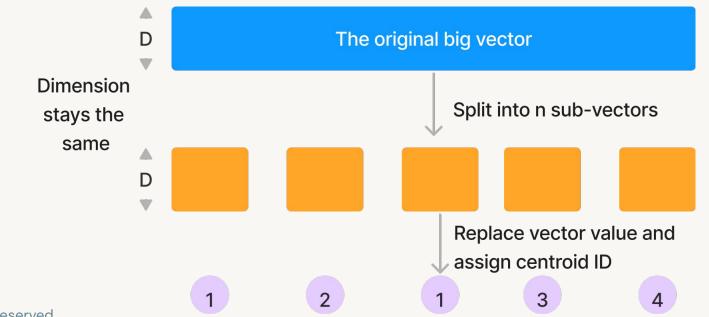
Compressing vectors with Product Quantization

PQ stores vectors with fewer bytes

Quantization = representing vectors to a smaller set of vectors

• Naive example: round(8.954521346) = 9

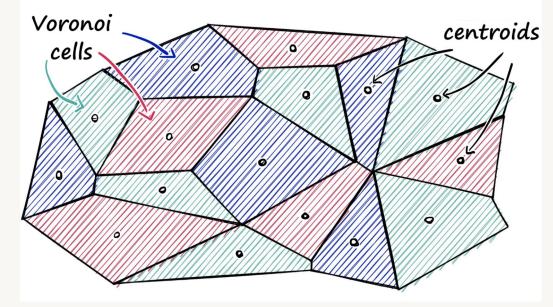
Trade off between recall and memory saving



FAISS: Facebook AI Similarity Search

Forms clusters of dense vectors and conducts Product Quantization

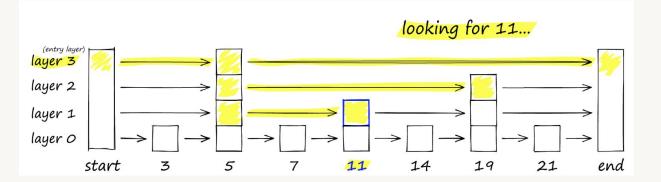
- Compute Euclidean distance between all points and query vector
- Given a query vector, identify which cell it belongs to
- Find all other vectors belonging to that cell
- *Limitation*: Not good with sparse vectors (refer to <u>GitHub issue</u>)



HNSW: Hierarchical Navigable Small Worlds

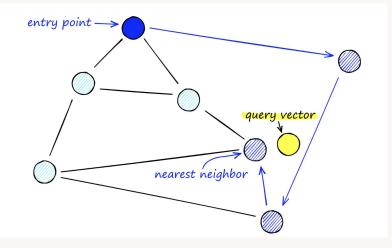
Builds proximity graphs based on Euclidean (L2) distance

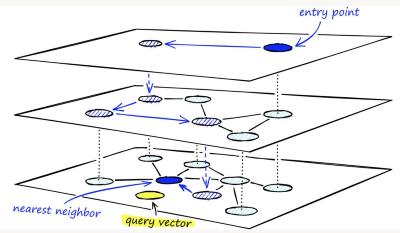
Uses linked list to find the element x: "11"



Traverses from query vector node to find the nearest neighbor

• What happens if too many nodes? Use hierarchy!





Source: Pinecone

Ability to search for <u>similar</u> objects is

Not limited to fuzzy text or exact matching rules

Filtering

Adding filtering function is hard

I want Nike-only: need an additional metadata index for "Nike"

Types

Source: Pinecone

- Post-query
- In-query
- Pre-query

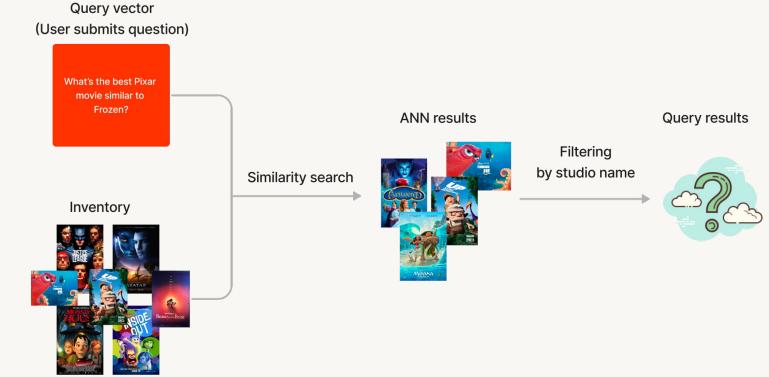
No one-sized shoe fits all

Different vector databases implement this differently

Post-query filtering

Applies filters to top-k results after user queries

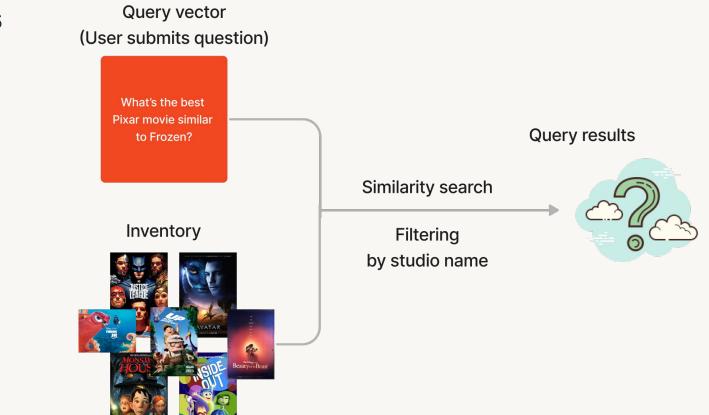
- Leverages ANN speed
- # of results is highly unpredictable
- Maybe no products meet the requirements



In-query filtering

Compute both product similarity and filters simultaneously

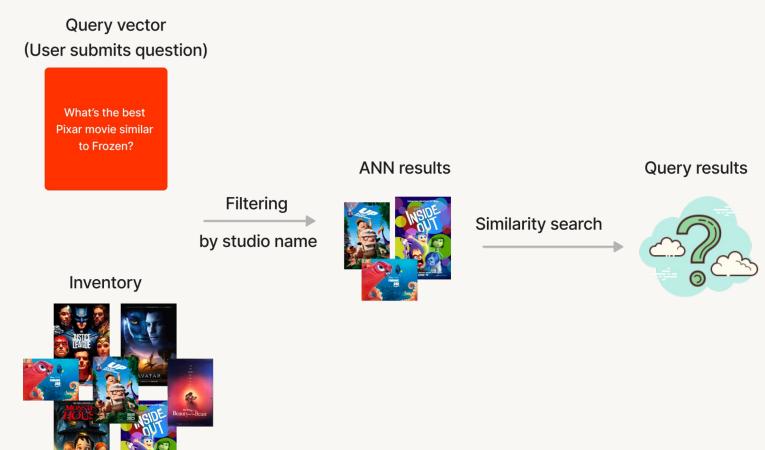
- Product similarity as vectors
- Branding as a scalar
- Leverages ANN speed
- May hit system OOM!
 - Especially when many filters are applied
- Suitable for row-based data



Pre-query filtering

Search for products within a limited scope

- All data needs to be filtered == brute force search!
 - Slows down search
- Not as performant as post- or in-query filtering

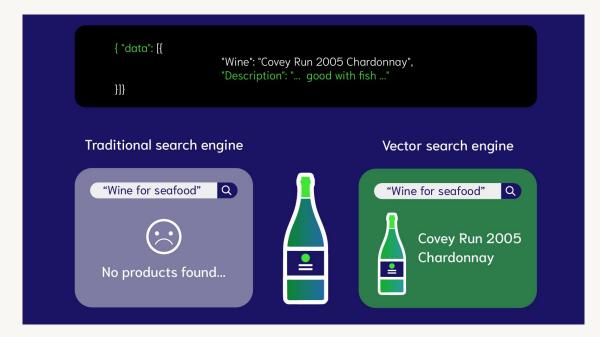


Vector stores Databases, libraries, plugins

Why are vector database (VDBs) so hot?

Query time and scalability

- Specialized, full-fledged databases for unstructured data
 - Inherit database properties, i.e.
 Create-Read-Update-Delete (CRUD)
- Speed up query search for the closest vectors
 - Rely on ANN algorithms
 - Organize embeddings into indices



What about vector libraries or plugins?

Many don't support filter queries, i.e. "WHERE"

Libraries create vector indices

- Approximate Nearest Neighbor (ANN) search algorithm
- Sufficient for small, static data
- Do not have CRUD support
 - Need to rebuild
- Need to wait for full import to finish before querying
- Stored in-memory (RAM)
- No data replication

Plugins provide architectural enhancements

- Relational databases or search systems may offer vector search plugins, e.g.,
 - Elasticsearch
 - <u>pgvector</u>
- Less rich features (generally)
 - Fewer metric choices
 - Fewer ANN choices
- Less user-friendly APIs

Caveat: things are moving fast! These weaknesses could improve soon!

Do I need a vector database?

Best practice: Start without. Scale out as necessary.

Pros

- Scalability
 - Mil/billions of records
- Speed
 - Fast query time (low latency)
- Full-fledged database properties
 - If use vector libraries, need to come up with a way to store the objects and do filtering
 - If data changes frequently, it's cheaper than using an online model to compute embeddings dynamically!

Cons

- One more system to learn and integrate
- Added cost

Popular vector database comparisons

	Released	Billion-scale vector support	Approximate Nearest Neighbor Algorithm	LangChain Integration
Open-Sourced				
Chroma	2022	No	HNSW	Yes
Milvus	2019	Yes	FAISS, ANNOY, HNSW	
Qdrant	2020	No	HNSW	
Redis	2022	No	HNSW	
Weaviate	2016	No	HNSW	
Vespa	2016	Yes	Modified HNSW	
Not Open-Sourced				
Pinecone	2021	Yes	Proprietary	Yes

*Note: the information is collected from public documentation. It is accurate as of May 3, 2023.

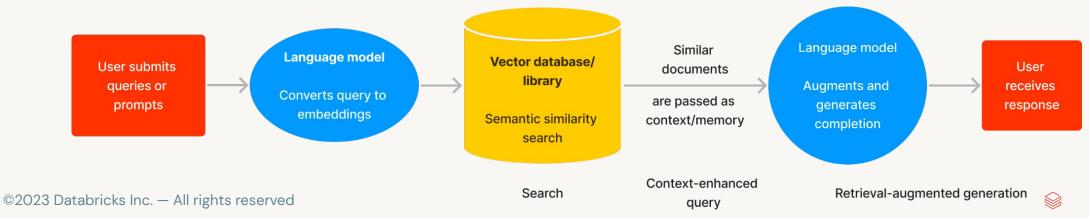
Best practices

©2023 Databricks Inc. – All rights reserved

Do I always need a vector store?

Vector store includes vector databases, libraries or plugins

- Vector stores extend LLMs with knowledge
 - The returned relevant documents become the LLM context
 - Context can reduce hallucination (Module 5!)
- Which use cases do not need context augmentation?
 - Summarization
 - Text classification
 - Translation



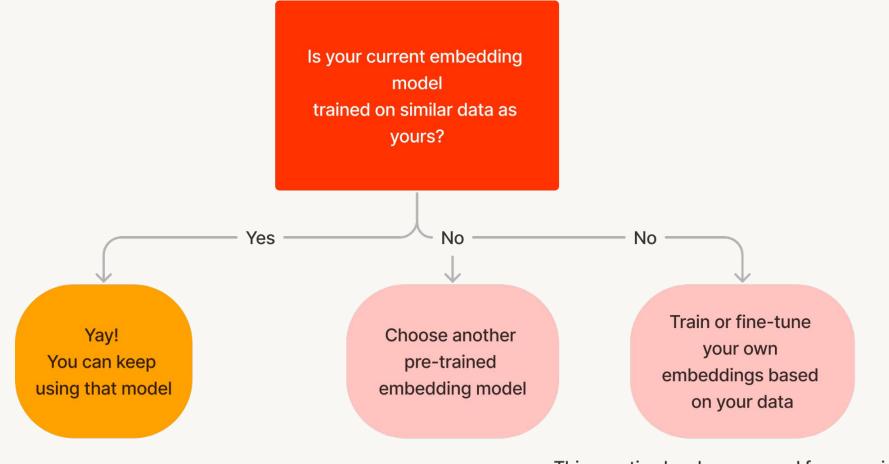
How to improve retrieval performance?

This means users get better responses

- Embedding model selection
 - Do I have the right embedding model for my data?
 - Do my embeddings capture BOTH my documents and queries?
- Document storage strategy
 - Should I store the whole document as one? Or split it up into chunks?

Tip 1: Choose your embedding model wisely

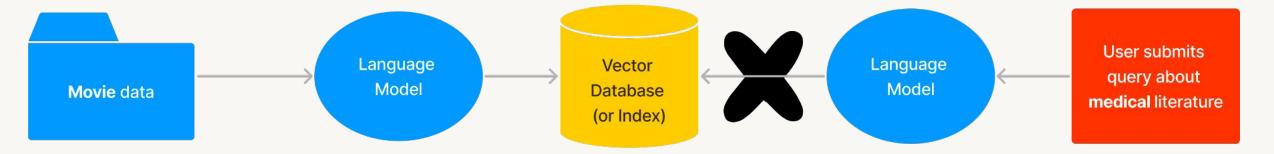
The embedding model should represent BOTH your queries and documents



This practice has been around for years in NLP. Example: Fine-tune BERT embeddings

Tip 2: Ensure embedding space is the same for both queries and documents

- Use the same embedding model for indexing and querying
 - OR if you use different embedding models, make sure they are trained on similar data (therefore produce the same embedding space!)

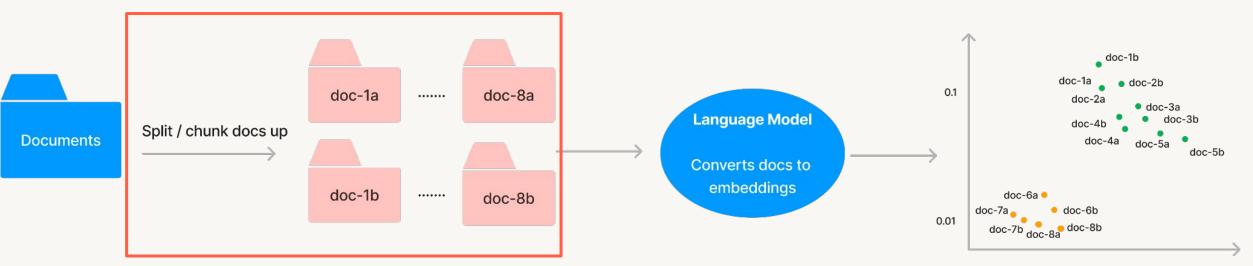


This will give you bad result!!

Chunking strategy: Should I split my docs?

Split into paragraphs? Sections?

- Chunking strategy determines
 - How relevant is the context to the prompt?
 - How much context/chunks can I fit within the model's **token limit**?
 - Do I need to pass this output to the next LLM? (Module 3: Chaining LLMs into a workflow)
- Splitting 1 doc into smaller docs = 1 doc can produce N vectors of M tokens



Chunking strategy is use-case specific

Another iterative step! Experiment with different chunk sizes and approaches

- How long are our documents?
 - 1 sentence?
 - N sentences?
- If 1 chunk = 1 sentence, embeddings focus on specific meaning
- If 1 chunk = multiple paragraphs, embeddings capture broader theme
 - How about splitting by headers?
- Do we know user behavior? How long are the queries?
 - Long queries may have embeddings more aligned with the chunks returned
 - Short queries can be more precise

Chunking best practices are not yet well-defined It's still a very new field!

Existing resources:

- <u>Text Splitters</u> by LangChain
- <u>Blog post on semantic search</u> by Vespa light mention of chunking
- <u>Chunking Strategies</u> by Pinecone

Preventing silent failures and undesired performance

- For users: include explicit instructions in prompts
 - "Tell me the top 3 hikes in California. If you do not know the answer, do not make it up. Say 'I don't have information for that.'"
 - Helpful when upstream embedding model selection is incorrect
- For software engineers
 - Add failover logic •
 - If distance-x exceeds threshold y, show canned response, rather than showing nothing •
 - Add basic toxicity classification model on top •
 - Prevent users from submitting offensive inputs •
 - Discard offensive content to avoid training or saving to VDB
 - Configure VDB to time out if a query takes too long to return a response ٠

Tay: Microsoft issues apology over racist chatbot fiasco Source: **BBC**

Module Summary

Embeddings, Vector Databases and Search – What have we learned?

- Vector stores are useful when you need context augmentation.
- Vector search is all about calculating vector similarities or distances.
- A vector database is a regular database with out-of-the-box search capabilities.
- Vector databases are useful if you need database properties, have big data, and need low latency.
- Select the right embedding model for your data.
- Iterate upon document splitting/chunking strategy

Time for some code!