
© Databricks Inc. — All rights reserved

Module 2
Embeddings, Vector Databases,
and Search

© Databricks Inc. — All rights reserved

By the end of this module you will:

• Understand vector search strategies and how to evaluate search results

• Understand the utility of vector databases

• Differentiate between vector databases, vector libraries, and vector plugins

• Learn best practices for when to use vector stores and how to improve
search-retrieval performance

Learning Objectives

© Databricks Inc. — All rights reserved

How do language models learn knowledge?

Through model training or fine-tuning

• Via model weights
• More on fine-tuning in Module

Through model inputs

• Insert knowledge or context into the input
• Ask the LM to incorporate the context in its output

This is what we will cover:

• How do we use vectors to search and provide relevant context to LMs?

© Databricks Inc. — All rights reserved

Passing context to LMs helps factual recall

• Fine-tuning is usually better-suited to teach a model specialized tasks
• Analogy: Studying for an exam weeks away

• Passing context as model inputs improves factual recall
• Analogy: Take an exam with open notes
• Downsides:

• Context length limitation
• E.g., OpenAI’s gpt-3.5-turbo accepts a maximum of ~ tokens (~ pages) as context
• Common mitigation method: pass document summaries instead
• Anthropic’s Claude: k token limit
• An ongoing research area (Pope et al , Fu et al)

• Longer context = higher API costs = longer processing times

Source: OpenAI

https://techcrunch.com/2023/05/11/anthropics-latest-model-can-take-the-great-gatsby-as-input
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2212.14052
https://github.com/openai/openai-cookbook/blob/main/examples/Question_answering_using_embeddings.ipynb

© Databricks Inc. — All rights reserved

Word Embedding: Basics. Create a vector from a word | by Hariom Gautam | Medium

Refresher: We represent words with vectors

We can project these vectors onto D
to see how they relate graphically

https://medium.com/@hari4om/word-embedding-d816f643140

© Databricks Inc. — All rights reserved

Turn images and audio into vectors too

• Object recognition
• Scene detection
• Product search

• Translation
• Question Answering
• Semantic search

• Speech to text
• Music transcription
• Machinery malfunction

[. , . , - . , ….]

[. , . , - . , ….]

[. , . , - . , ….]

Data objects Vectors Tasks

© Databricks Inc. — All rights reserved

Use cases of vector databases
• Similarity search: text, images, audio

• De-duplication
• Semantic match, rather than keyword match!

• Example on enhancing product search

• Very useful for knowledge-based Q/A

• Recommendation engines
• Example blog post: Spotify uses vector

search to recommend podcast episodes

• Finding security threats
• Vectorizing virus binaries

and finding anomalies Shared embedding space for queries and podcast episodes

Are electric cars better for the environment?

electric cars climate impact

Environmental impact of electric vehicles

How to cope with the pandemic

dealing with covid ptsd

Dealing with covid anxiety

Source: Spotify

https://www.databricks.com/blog/enhancing-product-search-large-language-models-llms.html
https://engineering.atspotify.com/2022/03/introducing-natural-language-search-for-podcast-episodes/
https://engineering.atspotify.com/2022/03/introducing-natural-language-search-for-podcast-episodes/

© Databricks Inc. — All rights reserved

Search and Retrieval-Augmented Generation
The RAG workflow

© Databricks Inc. — All rights reserved

Search and Retrieval-Augmented Generation
The RAG workflow

© Databricks Inc. — All rights reserved

Search and Retrieval-Augmented Generation
The RAG workflow

© Databricks Inc. — All rights reserved

How does
vector search work?

9
2

© Databricks Inc. — All rights reserved

Vector search strategies

• K-nearest neighbors (KNN)

• Approximate nearest neighbors (ANN)
• Trade accuracy for speed gains
• Examples of indexing algorithms:

• Tree-based: ANNOY by Spotify
• Proximity graphs: HNSW
• Clustering: FAISS by Facebook
• Hashing: LSH
• Vector compression:

SCaNN by Google Source: Weaviate

https://github.com/spotify/annoy
https://arxiv.org/abs/1603.09320
https://github.com/facebookresearch/faiss
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
https://weaviate.io/blog/why-is-vector-search-so-fast

© Databricks Inc. — All rights reserved

The higher the metric, the less similar

How to measure if 2 vectors are similar?
L2 (Euclidean) and cosine are most popular

Distance metrics Similarity metrics

Source: buildin.com

The higher the metric, the more similar

https://builtin.com/machine-learning/cosine-similarity

© Databricks Inc. — All rights reserved

Compressing vectors with Product Quantization
PQ stores vectors with fewer bytes

Quantization = representing vectors to a smaller set of vectors

• Naive example: round(8.954521346) = 9

Trade off between recall and memory saving

© Databricks Inc. — All rights reserved

• Compute Euclidean distance between all points and query vector
• Given a query vector, identify which cell it belongs to
• Find all other vectors belonging to that cell
• Limitation: Not good with sparse vectors (refer to GitHub issue)

FAISS: Facebook AI Similarity Search
Forms clusters of dense vectors and conducts Product Quantization

Source: Pinecone

https://github.com/facebookresearch/faiss/issues/1922
https://www.pinecone.io/learn/faiss-tutorial/

© Databricks Inc. — All rights reserved

Uses linked list to find the element x: “11”

Traverses from query vector node to find the
nearest neighbor

• What happens if too many nodes?
Use hierarchy!

HNSW: Hierarchical Navigable Small Worlds
Builds proximity graphs based on Euclidean (L2) distance

Source: Pinecone

https://www.pinecone.io/learn/hnsw/

© Databricks Inc. — All rights reserved

Ability to search for similar
objects is

Not limited to fuzzy text or
exact matching rules

© Databricks Inc. — All rights reserved

Filtering

© Databricks Inc. — All rights reserved

Adding filtering function is hard

Types

• Post-query
• In-query
• Pre-query

No one-sized shoe fits all

Different vector databases implement this differently

I want Nike-only: need an additional metadata index for “Nike”

Source: Pinecone

https://www.pinecone.io/learn/what-is-similarity-search/

© Databricks Inc. — All rights reserved

Post-query filtering

• Leverages ANN speed

• # of results is highly
unpredictable

• Maybe no products meet
the requirements

Applies filters to top-k results after user queries

© Databricks Inc. — All rights reserved

In-query filtering

• Product similarity as vectors

• Branding as a scalar

• Leverages ANN speed

• May hit system OOM!
• Especially when many filters

are applied

• Suitable for row-based data

Compute both product similarity and filters simultaneously

© Databricks Inc. — All rights reserved

Pre-query filtering

• All data needs to be
filtered == brute force
search!

• Slows down search

• Not as performant as
post- or in-query filtering

Search for products within a limited scope

© Databricks Inc. — All rights reserved

Vector stores
Databases, libraries, plugins

© Databricks Inc. — All rights reserved

• Specialized, full-fledged databases
for unstructured data

• Inherit database properties, i.e.
Create-Read-Update-Delete (CRUD)

Why are vector database (VDBs) so hot?
Query time and scalability

• Speed up query search for the
closest vectors

• Rely on ANN algorithms
• Organize embeddings into indices

Image Source: Weaviate

https://weaviate.io/blog/vector-embeddings-explained

© Databricks Inc. — All rights reserved

• Approximate Nearest Neighbor
(ANN) search algorithm

• Sufficient for small, static data
• Do not have CRUD support

• Need to rebuild

• Need to wait for full import to
finish before querying

• Stored in-memory (RAM)
• No data replication

What about vector libraries or plugins?
Many don’t support filter queries, i.e. “WHERE”

• Relational databases or search
systems may offer vector search
plugins, e.g.,

• Elasticsearch
• pgvector

• Less rich features (generally)
• Fewer metric choices
• Fewer ANN choices

• Less user-friendly APIs

Caveat: things are moving fast! These weaknesses

could improve soon!

Libraries create vector indices Plugins provide architectural
enhancements

https://github.com/pgvector/pgvector

© Databricks Inc. — All rights reserved

Do I need a vector database?
Best practice: Start without. Scale out as necessary.

• Scalability
• Mil/billions of records

• Speed
• Fast query time (low latency)

• Full-fledged database properties
• If use vector libraries, need to come up with a

way to store the objects and do filtering

• If data changes frequently, it’s cheaper than
using an online model to compute
embeddings dynamically!

• One more system to learn
and integrate

• Added cost

Pros Cons

© Databricks Inc. — All rights reserved

Popular vector database comparisons

Released Billion-scale vector
support

Approximate Nearest
Neighbor Algorithm

LangChain
Integration

Open-Sourced

Chroma No HNSW Yes

Milvus Yes FAISS, ANNOY, HNSW

Qdrant No HNSW

Redis No HNSW

Weaviate No HNSW

Vespa Yes Modified HNSW

Not Open-Sourced

Pinecone Yes Proprietary Yes

*Note: the information is collected from public documentation. It is accurate
as of May , .

© Databricks Inc. — All rights reserved

Best practices

© Databricks Inc. — All rights reserved

Do I always need a vector store?
Vector store includes vector databases, libraries or plugins

• Vector stores extend LLMs with knowledge
• The returned relevant documents become the LLM context
• Context can reduce hallucination (Module !)

• Which use cases do not need context augmentation?
• Summarization
• Text classification
• Translation

© Databricks Inc. — All rights reserved

How to improve retrieval performance?
This means users get better responses

• Embedding model selection
• Do I have the right embedding model for my data?
• Do my embeddings capture BOTH my documents and queries?

• Document storage strategy
• Should I store the whole document as one? Or split it up into chunks?

© Databricks Inc. — All rights reserved

Tip 1: Choose your embedding model wisely
The embedding model should represent BOTH your queries and documents

© Databricks Inc. — All rights reserved

• Use the same embedding model for indexing and querying
• OR if you use different embedding models, make sure they are trained on similar

data (therefore produce the same embedding space!)

Tip 2: Ensure embedding space is the same
for both queries and documents

© Databricks Inc. — All rights reserved

Chunking strategy: Should I split my docs?
Split into paragraphs? Sections?

• Chunking strategy determines
• How relevant is the context to the prompt?
• How much context/chunks can I fit within the model’s token limit?

• Do I need to pass this output to the next LLM? (Module : Chaining LLMs into a workflow)

• Splitting doc into smaller docs = doc can produce N vectors of M tokens

© Databricks Inc. — All rights reserved

Chunking strategy is use-case specific
Another iterative step! Experiment with different chunk sizes and approaches

• How long are our documents?
• sentence?
• N sentences?

• If chunk = sentence, embeddings focus on specific meaning

• If chunk = multiple paragraphs, embeddings capture broader theme
• How about splitting by headers?

• Do we know user behavior? How long are the queries?
• Long queries may have embeddings more aligned with the chunks returned
• Short queries can be more precise

© Databricks Inc. — All rights reserved

It’s still a very new field!

Existing resources:

• Text Splitters by LangChain
• Blog post on semantic search by Vespa - light mention of chunking
• Chunking Strategies by Pinecone

Chunking best practices are not yet well-defined

https://python.langchain.com/en/latest/modules/indexes/text_splitters.html
https://blog.vespa.ai/semantic-search-with-multi-vector-indexing/
https://www.pinecone.io/learn/chunking-strategies/

© Databricks Inc. — All rights reserved

Preventing silent failures and undesired
performance

• For users: include explicit instructions in prompts
• "Tell me the top 3 hikes in California. If you do not know the answer, do not

make it up. Say 'I don’t have information for that.'"

• Helpful when upstream embedding model selection is incorrect

• For software engineers
• Add failover logic

• If distance-x exceeds threshold y, show canned response, rather than showing nothing

• Add basic toxicity classification model on top
• Prevent users from submitting offensive inputs
• Discard offensive content to avoid training or saving to VDB

• Configure VDB to time out if a query takes too long to return a response

Source: BBC

https://www.bbc.com/news/technology-35902104

© Databricks Inc. — All rights reserved

Module Summary

• Vector stores are useful when you need context augmentation.

• Vector search is all about calculating vector similarities or distances.

• A vector database is a regular database with out-of-the-box search
capabilities.

• Vector databases are useful if you need database properties, have big
data, and need low latency.

• Select the right embedding model for your data.

• Iterate upon document splitting/chunking strategy

Embeddings, Vector Databases and Search - What have we learned?

© Databricks Inc. — All rights reserved

Time for some code!

