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COLLABORATIVE FILTERING



OBJECT RECOMMENDATION

Matching consumers to products is an important practical problem.

We can often make these connections using user feedback about subsets of
products. To give some prominent examples:

I Netflix lets users to rate movies
I Amazon lets users to rate products and write reviews about them
I Yelp lets users to rate businesses, write reviews, upload pictures
I YouTube lets users like/dislike a videos and write comments

Recommendation systems use this information to help recommend new
things to customers that they may like.



CONTENT FILTERING

One strategy for object recommendation is:

Content filtering: Use known information about the products and users to
make recommendations. Create profiles based on

I Products: movie information, price information, product descriptions
I Users: demographic information, questionnaire information

Example: A fairly well known example is the online radio Pandora, which
uses the “Music Genome Project.”

I An expert scores a song based on hundreds of characteristics
I A user also provides information about his/her music preferences
I Recommendations are made based on pairing these two sources



COLLABORATIVE FILTERING

Content filtering requires a lot of information that can be difficult and
expensive to collect. Another strategy for object recommendation is:

Collaborative filtering (CF): Use previous users’ input/behavior to make
future recommendations. Ignore any a priori user or object information.

I CF uses the ratings of similar users to predict my rating.
I CF is a domain-free approach. It doesn’t need to know what is being

rated, just who rated what, and what the rating was.

One CF method uses a neighborhood-based approach. For example,

1. define a similarity score between me and other users based on how
much our overlapping ratings agree, then

2. based on these scores, let others “vote” on what I would like.

These filtering approaches are not mutually exclusive. Content information
can be built into a collaborative filtering system to improve performance.



LOCATION-BASED CF METHODS (INTUITION)

Location-based approaches embed users and objects into points in Rd.

1Koren, Y., Robert B., and Volinsky, C.. “Matrix factorization techniques for recommender systems.” Computer 42.8 (2009): 30-37.



MATRIX FACTORIZATION



MATRIX FACTORIZATION
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Matrix factorization (MF) gives a way
to learn user and object locations.

First, form the rating matrix M:

I Contains every user/object pair.
I Will have many missing values.
I The goal is to fill in these

missing values.

MF and recommendation systems:
I We have prediction of every

missing rating for user i.
I Recommend the highly rated

objects among the predictions.



SINGULAR VALUE DECOMPOSITION

Our goal is to factorize the matrix M. We’ve discussed one method already.

Singular value decomposition: Every matrix M can be written as
M = USVT , where UTU = I, VTV = I and S is diagonal with Sii ≥ 0.

r = rank(M). When it’s small, M has fewer “degrees of freedom.”

Collaborative filtering with matrix factorization is intuitively similar.



MATRIX FACTORIZATION
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We will define a model for learning a low-rank factorization of M. It should:
1. Account for the fact that most values in M are missing
2. Be low-rank, where d � min{N1,N2} (e.g., d ≈ 10)
3. Learn a location ui ∈ Rd for user i and vj ∈ Rd for object j



LOW-RANK MATRIX FACTORIZATION
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Why learn a low-rank matrix?
I We think that many columns should look similar. For example, movies

like Caddyshack and Animal House should have correlated ratings.
I Low-rank means that the N1-dimensional columns don’t “fill up” RN1 .
I Since > 95% of values may be missing, a low-rank restriction gives

hope for filling in missing data because it models correlations.



PROBABILISTIC MATRIX

FACTORIZATION



SOME NOTATION
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• Let the set Ω contain the pairs (i, j)
that are observed. In other words,

Ω = {(i, j) : Mij is measured}.

So (i, j) ∈ Ω if user i rated object j.

• Let Ωui be the index set of objects
rated by user i.

• Let Ωvj be the index set of users who
rated object j.



PROBABILISTIC MATRIX FACTORIZATION

Generative model
For N1 users and N2 objects, generate

User locations: ui ∼ N(0, λ−1I), i = 1, . . . ,N1

Object locations: vj ∼ N(0, λ−1I), j = 1, . . . ,N2

Given these locations the distribution on the data is

Mij ∼ N(uT
i vj, σ

2), for each (i, j) ∈ Ω .

Comments:
I Since Mij is a rating, the Gaussian assumption is clearly wrong.
I However, the Gaussian is a convenient assumption. The algorithm will

be easy to implement, and the model works well.



MODEL INFERENCE

Q: There are many missing values in the matrix M. Do we need some sort of
EM algorithm to learn all the u’s and v’s?

I Let Mo be the part of M that is observed and Mm the missing part. Then

p(Mo|U,V) =

∫
p(Mo,Mm|U,V)dMm.

I Recall that EM is a tool for maximizing p(Mo|U,V) over U and V .

I Therefore, it is only needed when
1. p(Mo|U,V) is hard to maximize,
2. p(Mo,Mm|U,V) is easy to work with, and
3. the posterior p(Mm|Mo,U,V) is known.

A: If p(Mo|U,V) doesn’t present any problems for inference, then no.

(Similar conclusion in our MAP scenario, maximizing p(Mo,U,V).)



MODEL INFERENCE

To test how hard it is to maximize p(Mo,U,V) over U and V , we have to

1. Write out the joint likelihood
2. Take its natural logarithm
3. Take derivatives with respect to ui and vj and see if we can solve

The joint likelihood of p(Mo,U,V) can be factorized as follows:

p(Mo,U,V) =
[ ∏

(i,j)∈Ω

p(Mij|ui, vj)
]

︸ ︷︷ ︸
conditionally independent likelihood

×
[ N1∏

i=1

p(ui)
][ N2∏

j=1

p(vj)
]

︸ ︷︷ ︸
independent priors

.

By definition of the model, we can write out each of these distributions.



MAXIMUM A POSTERIORI

Log joint likelihood and MAP
The MAP solution for U and V is the maximum of the log joint likelihood

UMAP,VMAP = arg max
U,V

∑
(i,j)∈Ω

ln p(Mij|ui, vj) +

N1∑
i=1

ln p(ui) +

N2∑
j=1

ln p(vj)

Calling the MAP objective function L, we want to maximize

L = −
∑

(i,j)∈Ω

1
2σ2 ‖Mij − uT

i vj‖2 −
N1∑

i=1

λ

2
‖ui‖2 −

N2∑
j=1

λ

2
‖vj‖2 + constant

The squared terms appear because all distributions are Gaussian.



MAXIMUM A POSTERIORI

To update each ui and vj, we take the derivative of L and set to zero.

∇uiL =
∑
j∈Ωui

1
σ2 (Mij − uT

i vj)vj − λui = 0

∇vjL =
∑
i∈Ωvj

1
σ2 (Mij − vT

j ui)ui − λvi = 0

We can solve for each ui and vj individually (therefore EM isn’t required),

ui =
(
λσ2I +

∑
j∈Ωui

vjvT
j

)−1(∑
j∈Ωui

Mijvj

)
vj =

(
λσ2I +

∑
i∈Ωvj

uiuT
i

)−1(∑
i∈Ωvj

Mijui

)
However, we can’t solve for all ui and vj at once to find the MAP solution.
Thus, as with K-means and the GMM, we use a coordinate ascent algorithm.



PROBABILISTIC MATRIX FACTORIZATION

MAP inference coordinate ascent algorithm
Input: An incomplete ratings matrix M, as indexed by the set Ω. Rank d.

Output: N1 user locations, ui ∈ Rd, and N2 object locations, vj ∈ Rd.

Initialize each vj. For example, generate vj ∼ N(0, λ−1I).

for each iteration do

I for i = 1, . . . ,N1 update user location

ui =
(
λσ2I +

∑
j∈Ωui

vjvT
j

)−1(∑
j∈Ωui

Mijvj

)
I for j = 1, . . . ,N2 update object location

vj =
(
λσ2I +

∑
i∈Ωvj

uiuT
i

)−1(∑
i∈Ωvj

Mijui

)
Predict that user i rates object j as uT

i vj rounded to closest rating option



ALGORITHM OUTPUT FOR MOVIES

Hard to show in R2, but we get locations for movies and users. Their relative
locations captures relationships (that can be hard to explicitly decipher).

1Koren, Y., Robert B., and Volinsky, C.. “Matrix factorization techniques for recommender systems.” Computer 42.8 (2009): 30-37.



ALGORITHM OUTPUT FOR MOVIES
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Returning to Animal House (j) and Caddyshack (j′), it’s easy to understand
the relationship between their locations vj and vj′ :

I For these two movies to have similar rating patterns, their respective v’s
must be similar (i.e., close to each other in Rd).

I The same holds for users who have similar tastes across movies.



MATRIX FACTORIZATION AND

RIDGE REGRESSION



MATRIX FACTORIZATION AND RIDGE REGRESSION
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There is a close relationship between this algorithm and ridge regression.
I Think from the perspective of object location vj.
I Minimize the sum squared error 1

σ2 (Mij − uT
i vj)

2 with penalty λ‖vj‖2.
I This is ridge regression for vj, as the update also shows:

vj =
(
λσ2I +

∑
i∈Ωvj

uiuT
i

)−1(∑
i∈Ωvj

Mijui

)
I So this model is a set of N1 + N2 coupled ridge regression problems.



MATRIX FACTORIZATION AND LEAST SQUARES
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We can also connect it to least squares.
I Remove the Gaussian priors on ui and vj. The update for, e.g., vj is then

vj =
(∑

i∈Ωvj
uiuT

i

)−1(∑
i∈Ωvj

Mijui

)
I This is the least squares solution. It requires that every user has rated at

least d objects and every object is rated by at least d users.
I This probably isn’t the case, so we see why a prior is necessary here.


