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This Lecture: Relation between Variables
An association

A trend
» Positive association or Negative association

A pattern
» Could be any discernible “shape”
» Could be Linear or Non-linear

Visualize, then quantify, but be cautious!



Autonomy(Corp Rhine Paradox*
Joseph Rhine was a parapsychologist in the 1950’s
» Experiment: subjects guess whether 10 hidden cards were 

red or blue

He found that about 1 person in 1,000 had 
Extra Sensory Perception!
» They could correctly guess the color of all

10 cards

*Example from Jeff Ullman/Anand Rajaraman



Autonomy(Corp Rhine Paradox
Called back “psychic” subjects and had them repeat test
» They all failed

Concluded that act of telling psychics that they have psychic 
abilities causes them to lose it…(!)

Q: What’s wrong with his conclusion?



Rhine’s Error
Q: What’s wrong with his conclusion?

210 = 1,024 combinations of red and blue of length 10

0.98 probability at least 1subject in 1,000 
will guess correctly



The Correlation Coefficient ⍴
Pearson product-moment correlation coefficient ⍴
»Measures linear association between X and Y
» Based on standard units (Standard Deviation)

Ranges from -1 ≤ ⍴ ≤ 1
» ⍴ =  1: scatter is perfect straight line sloping up
» ⍴ = -1: scatter is perfect straight line sloping

down
» ⍴ = 0: No linear association; uncorrelated



+ Correlation
Total positive correlation

https://commons.wikimedia.org/wiki/User:Kiatdd



- Correlation
Total negative correlation

https://commons.wikimedia.org/wiki/User:Kiatdd



0 Correlation
No correlation

https://commons.wikimedia.org/wiki/User:Kiatdd



-1 < ⍴ < 1Correlation
-1 < ⍴ < 1correlation

https://commons.wikimedia.org/wiki/User:Kiatdd



Definition of ⍴
Correlation Coefficient ⍴ :
» Average of product of (x in standard units) and (y in standard units)
»Measures how clustered the scatter is around a straight line

Further Properties of ⍴
» ⍴ is a pure number with no units
» ⍴ is not affected by changing units of

measurement
» ⍴ is not affected by switching the x and y axes

Remember: Correlation is not causation



Graph of Averages
A visualization of x and y pairs
» Group each x with a representative x value (e.g., rounding)
» Average the corresponding y values for each group

One point per representative x value and average y value
If the association between x and y is linear,
then points in the graph of averages tend
to fall on the regression line



Regression to the Mean
A statement about x and y pairs
»Measured in standard units
»Describing the deviation of x from 0 (the average of x’s)
» And the deviation of y from 0 (the average of y’s)

On average, y deviates from 0 less than x deviates from 0



Regression to the Mean
A statement about x and y pairs
»Measured in standard units
»Describing the deviation of x from 0 (the average of x’s)
» And the deviation of y from 0 (the average of y’s)

On average, y deviates from 0 less than x deviates from 0

Not true for all points — a statement about averages

Regression
Line

⍴
Correlation



Slope & Intercept
In original units, the regression line has this equation:

⍴
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Slope & Intercept
In original units, the regression line has this equation:

Lines can be expressed by slope & intercept

y in standard units x in standard units

⍴



Regression Line
Original Units

SD x
⍴ * SD y



Regression Line
Original Units

(Average x,
Average y)

SD x
⍴ * SD y



Regression Line
Standard Units

(0, 0)
1

⍴

Original Units

(Average x,
Average y)

SD x
⍴ * SD y



The Regression Model
A model is a set of assumptions about the data

Regression model justifies using regression line as a predictor

For each point
» Sample an x
» Find its y on regression

line (signal)
» Add a sample of

deviation (noise)



Predicting with Regression
Justified by assuming that x and y are linearly related

Only reasonable within the range of observed data

Varies by sample with more variability at the extremes

Predictions are average values, not
perfect guesses



Errors: Evaluating Prediction Accuracy
Error: the difference between estimated and actual values
» Errors can be positive or negative
»Depend on data and the line chosen

Common metric: 
» Root Mean Squared Error (or Root Mean Squared Deviation)

Root Mean Squared Error (RMSE) =

RMSE



Regression by Minimizing Errors
The regression line is the one that minimizes MSE of
a collection of paired values

Minimizing any of these quantities yields equivalent results:
» Root Mean Squared Error
»Mean Squared Error
» Total Squared Error



Regression by Minimizing Errors
The regression line is the one that minimizes MSE of
a collection of paired values

The slope and intercept are unique for regression

Numerical minimization is approximate but effective

Lots of machine learning involves
minimizing error



Multiple Linear Regression
Simple regression: one input → one output
Multiple regression: many inputs → one output

GPA = adays * days + acontributions * contributions + b

Find a’s and b by minimizing RMSE



Statistics Terminology
Inference: Making conclusions from random samples

Population: The entire set that is the subject of interest

Parameter: A quantity computed for the entire population

Sample: A subset of the population
» Random Sample: we know chance any subset

of population will enter the sample, in advance

Statistic: A quantity computed for a particular sample



Estimating a Parameter
1. Describe the population and a parameter of interest
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Estimating a Parameter
1. Describe the population and a parameter of interest
2. Acquire a random sample
3. Compute statistics
4. Pick an estimate

Draw conclusions



Empirical Distributions, Statistics & Parameters
A reasonable way to estimate a parameter (e.g., population
average, max, median,…) is to compute the corresponding
statistic for a sample
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Empirical Distributions, Statistics & Parameters
A reasonable way to estimate a parameter (e.g., population
average, max, median,…) is to compute the corresponding
statistic for a sample

Different samples will lead to different estimates

Population (fixed) → Sample (random) → Statistic (random)

Goal: Infer the variability of a statistic,
using only a sample



Sample Variability
Anatomy of a sample:
» A sample contains not just a statistic, but a whole data set!

The same sample can be used for multiple purposes:
» Compute a statistic that is an estimate of a parameter
» Approximate the shape of the population

distribution



Confidence Intervals: A Margin of Error
Estimation is a process with a random outcome

Population (fixed) → Sample (random) → Statistic (random)

Instead of picking a single estimate of the parameter, we 
can pick a whole interval: lower bound to upper bound
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Estimation is a process with a random outcome

Population (fixed) → Sample (random) → Statistic (random)

Instead of picking a single estimate of the parameter, we 
can pick a whole interval: lower bound to upper bound

A 95% Confidence Interval is an interval
constructed so that it will contain the 
parameter for 95% of samples



Confidence Intervals: A Margin of Error
Estimation is a process with a random outcome

Population (fixed) → Sample (random) → Statistic (random)

A 95% Confidence Interval is an interval constructed so 
that it will contain the parameter for 95% of samples

For a particular sample, the interval either 
contains the parameter or it doesn’t:
the process works 95% of the time



Resampling
Inferential idea: When we wish we could sample again from 

the population, we instead sample from the sample



Intervals
If an interval around the parameter contains the estimate, 

then a (reflected) interval of the same width around the 
estimate contains the parameter (and vice versa)

Parameter Estimate



Resampled Confidence Interval

Collect a random sample
Compute your estimate (e.g., sample average)
Resample K samples from the sample, with replacement
» Compute the same statistic for each

resampled sample
» Take percentiles of the deviations from

the estimate

Inferential idea: The variability of the sampled distribution is 
a useful proxy for the variability of the original distribution



Verifying Intervals
When all you have is a sample, it is impossible to verify 

empirically whether the interval you compute is correct
If you have the whole population, then you can check how 

often intervals are correct



Simple Linear Regression
Simple: One explanatory or predictor variable x

Can be used to estimate response variable y based on x

Strength of linear relation between x and y is measured by 
correlation ⍴



Regression Line
Estimate of y  =  slope � ! +  intercept

slope  =  ⍴ �(SD of y) / (SD of x)

intercept  =  (average of y)  - slope � (average of x)

“Best” among all straight lines for estimating y based on x

“Best”: minimizes RMSE of estimation



Tyche, the Goddess of Chance



A “Model”: What Tyche does

Distance 
drawn at 

random from 
normal 

distribution 
with mean 0 Another distance 

drawn independently 
from the same 

normal distribution



Plan for Prediction
If our model is good:
» Regression line is close to Tyche’s true line
» Given a new value of x, predict y by finding the point on the 

regression line at that x
» Bootstrap the scatter plot
»Get a new prediction using the regression line that goes 

through the resampled plot
» Repeat the two steps above many times
» Get an interval of predictions of y for the given x



Predictions at Different Values of x
Since y is correlated with x, the predicted values of y
depend on the value of x

The width of the prediction interval also depends on x
» Typically, intervals are wider for values of x that are further 

away from the mean of x



Rain on the Prediction Parade

We observed a 
positive slope and 
used it to make 
our predictions

But what if the 
scatter plot got 
its positive slope 
just by chance?

What if the 
true line is 
actually FLAT?



Confidence Interval for True Slope
Steps: 
» Bootstrap the scatter plot
» Find the slope of the regression line through bootstrapped plot
» Repeat
»Draw the empirical histogram of all the generated slopes
» Get the “middle 95%” interval

That’s an approximate 95% confidence
interval for the slope of the true line



Inference for the True Slope
Null hypothesis: The slope of the true line is 0
Alternative hypothesis: No, it’s not
Method:
» Construct a bootstrap confidence interval for the true slope
» If the interval doesn’t contain 0, reject the null hypothesis
» If the interval does contain 0, there isn’t

enough evidence to reject the null hypothesis



Confidence Intervals for Testing
Null hypothesis: A parameter is equal to a specified value 
Alternative hypothesis: No, it’s not
Method:
» Construct a confidence interval for the parameter
» If the specified value isn’t in the interval, reject the null 

hypothesis
» If the interval does contain 0, there isn’t

enough evidence to reject the null hypothesis


