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This Lecture: Relation between Variables

An association

A trend

» Positive association or Negative association

A pattern
» Could be any discernible “shape”
» Could be Linear or Non-linear

Visualize, then quantify, but be cautious!



Rhine Paradox®

Joseph Rhine was a parapsychologist in the 1950's

» Experiment: subjects guess whether |0 hidden cards were
red or blue

He found that about | person in |,000 had
Extra Sensory Perception!

» They could correctly guess the color of all
|0 cards

*Example from Jeff Ullman/Anand Rajaraman



Rhine Paradox

Called back “psychic’” subjects and had them repeat test
» They all failed

Concluded that act of telling psychics that they have psychic
abilities causes them to lose it...(!)

Q: What’s wrong with his conclusion?




Rhine’s Error

Q: What’s wrong with his conclusion?
2'0 = 1,024 combinations of red and blue of length 10

0.98 probability at least |subject in |,000
will guess correctly




The Correlation Coefficient p

Pearson product-moment correlation coefficient p
» Measures linear association between X and Y
» Based on standard units (Standard Deviation)

Ranges from -| < p < |
» p = |:scatter is perfect straight line sloping up
» p = -l:scatter is perfect straight line sloping
down
» p = 0: No linear association; uncorrelated




+ Correlation

Total positive correlation

p=+1

https.//commons.wikimedia.org/wiki/User:Kiatdd




- Correlation

Total negative correlation

p=-1

https.//commons.wikimedia.org/wiki/User:Kiatdd




O Correlation

No correlation

https.//commons.wikimedia.org/wiki/User:Kiatdd




-1 < p < [Correlation

-I < p < |correlation

0< p <+1 1< p <0

https.//commons.wikimedia.org/wiki/User:Kiatdd




Definrtion of p

Correlation Coefficient p:
» Average of product of (x in standard units) and (y in standard units)
» Measures how clustered the scatter Is around a straight line

Further Properties of p
» P Is a pure number with no units
» p Is not affected by changing units of
measurement
» p 1s not affected by switching the x and y axes

Remember: Correlation is not causation



Graph of Averages

A visualization of x and y pairs
» Group each x with a representative x value (e.g., rounding)
» Average the corresponding y values for each group

One point per representative x value and average y value

It the association between x and y Is linear,
then points in the graph of averages tend
to fall on the regression line




Regression to the Mean

A statement about x and y pairs
» Measured In standard units
» Describing the deviation of x from O (the average of x's)
» And the deviation of y from O (the average of y’s)

On average, y deviates from O less than x deviates from O




Regression to the Mean

A statement about x and y pairs
» Measured In standard units
» Describing the deviation of x from O (the average of x's)
» And the deviation of y from O (the average of y’s)

On average, y deviates from O less than x deviates from O

[ Reg[;s;,ion Correlation |
yg(su) — P%/X L (su)

Not true for all points — a statement about averages




Slope & Intercept

In original units, the regression line has this equation:
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Slope & Intercept

In original units, the regression line has this equation:
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Slope & Intercept

In original units, the regression line has this equation:
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y In standard units ]

Lines can be expressed by slope & intercept
y = slope X x + intercept




Regression Line
Original Units




Regression Line
Original Units

(Average X,
Average y)
®




Standard Units

Regression Line
Original Units

(Average X,
® P ‘ Average y)
! ®




[he Regression Model

A model is a set of assumptions about the data

Regression model justifies using regression line as a predictor

2

For each point

» Sample an x 7 @
» Find Its y on regression

ine (signal) AR P
» Add a sample of 9

deviation (noise)




Predicting with Regression

Justified by assuming that x and y are linearly related
Only reasonable within the range of observed data
Varies by sample with more variability at the extremes

Predictions are average values, not
perfect guesses




Errors: BEvaluating Prediction Accuracy

Error: the difference between estimated and actual values
» Errors can be positive or negative
» Depend on data and the line chosen

Common metric:
» Root Mean Squared Error (or Root Mean Squared Deviation)

Root Mean Squared Error (RMSE) =

i1 (U — yt)?
RMSE:\/zt 1(; )




Regression by Minimizing krrors

The regression line Is the one that minimizes MSE of
a collection of paired values

Minimizing any of these quantities yields equivalent results:
» Root Mean Squared Error
» Mean Squared Error
» Total Squared Error




Regression by Minimizing krrors

The regression line Is the one that minimizes MSE of
a collection of paired values

The slope and intercept are unigque for regression

Numerical minimization Is approximate but effective

Lots of machine learning involves
MiNIMIzIiNg error




Multiple Linear Regression

Simple regression: one Input - one output

Multiple regression: many Inputs = one output

GPA = a,.,. days + a.ontributions contributions + b

Find a's and b by minimizing RMSE




Statistics Terminology

Inference: Making conclusions from random samples
Population: The entire set that Is the subject of interest
Parameter: A quantity computed for the entire population

Sample: A subset of the population
» Random Sample: we know chance any subset
of population will enter the sample, in advance

Statistic: A quantity computed for a particular sample



Estimating a Parameter

|. Describe the population and a parameter of interest




Estimating a Parameter

|. Describe the population and a parameter of interest
2. Acquire a random sample




Estimating a Parameter

|. Describe the population and a parameter of interest
2. Acquire a random sample
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Estimating a Parameter

|. Describe the population and a parameter of interest
2. Acquire a random sample
3. Compute statistics
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Estimating a Parameter

|. Describe the population and a parameter of interest
2. Acquire a random sample

3. Compute statistics

4. Pick an estimate
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Estimating a Parameter

|. Describe the population and a parameter of interest
2. Acquire a random sample

3. Compute statistics
4. Prefkan-estirmate——
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Empirical Distributions, Statistics & Parameters

A reasonable way to estimate a parameter (e.g., population
average, max, median,...) Is to compute the corresponding
statistic for a sample




Empirical Distributions, Statistics & Parameters

A reasonable way to estimate a parameter (e.g., population
average, max, median,...) Is to compute the corresponding
statistic for a sample

Different samples will lead to different estimates

Population (fixed) - Sample (random) = Statistic (random)




Empirical Distributions, Statistics & Parameters

A reasonable way to estimate a parameter (e.g., population
average, max, median,...) Is to compute the corresponding
statistic for a sample

Different samples will lead to different estimates

Population (fixed) - Sample (random) - Statistic (random)

Goal: Infer the variability of a statistic,
using only a sample




Sample Variability

Anatomy of a sample:
» A sample contains not just a statistic, but a whole data set!
The same sample can be used for multiple purposes:

» Compute a statistic that I1s an estimate of a parameter

» Approximate the shape of the population
distribution




Confidence Intervals: A Margin of Error

Estimation Is a process with a random outcome

Population (fixed) - Sample (random) = Statistic (random)

Instead of picking a single estimate of the parameter, we
can pick a whole interval: lower bound to upper bound




Confidence Intervals: A Margin of Error

Estimation Is a process with a random outcome

Population (fixed) - Sample (random) = Statistic (random)

Instead of picking a single estimate of the parameter, we
can pick a whole interval: lower bound to upper bound

A 95% Confidence Interval is an interval
constructed so that it will contain the
parameter for 95% of samples




Confidence Intervals: A Margin of Error

Estimation Is a process with a random outcome

Population (fixed) - Sample (random) = Statistic (random)

A 95% Confidence Interval is an interval constructed so
that it will contain the parameter for 95% of samples

For a particular sample, the interval erther
contains the parameter or it doesn't:
the process works 95% of the time




Resampling

Inferential idea: VWhen we wish we could sample again from
the population, we instead sample from the sample




Intervals

It an interval around the parameter contains the estimate,
then a (reflected) interval of the same width around the
estimate contains the parameter (and vice versa)
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Parameter Estimate




Resampled Confidence Interval

Inferential idea: The variability of the sampled distribution is
a useful proxy for the variability of the original distribution
Collect a random sample

Compute your estimate (e.g,, sample average)

Resample K samples from the sample, with replacement

» Compute the same statistic for each
resampled sample

» Take percentiles of the deviations from
the estimate




Veritying Intervals

When all you have is a sample, it I1s impossible to verify
empirically whether the interval you compute Is correct

T you have the whole population, then you can check how
often intervals are correct




SImple Linear Regression

Simple: One explanatory or predictor variable x
Can be used to estimate response variable y based on x

Strength of linear relation between x and y 1s measured by
correlation p




Regression Line
Estimate of y = slope X x + Iintercept

slope = p X (SD ofy) / (SD of x)
intercept = (average of y) - slope X (average of x)
"Best” among all straight lines for estimating y based on x

"Best’: minimizes RMSE of estimation




Tyche, the Goddess of Chance




A "Model: What Tyche does

/~ Distance <5

drawn at
random from Q

normal
distribution
\_with mean 0/

Another distance )
drawn independently
O from the same
normal distribution




Plan for Prediction

If our model is good:

» Regression line Is close to Tyche's true line

» Glven a new value of x, predict y by finding the point on the
regression line at that x

» Bootstrap the scatter plot

» Get a new prediction using the regression line that goes
through the resampled plot

» Repeat the two steps above many times

» Get an interval of predictions of y for the given x




Predictions at

Different Values of x

Since y I1s correlated with x, the predicted values of y
depend on the value of x

The width of the prediction interval also depends on x
» Typically, intervals are wider for values of x that are further

away from the mean of x




Rain on the Prediction Parade

We observed a
posrtive slope and
used it to make

%edictions y
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(But what if the
scatter plot got
its positive slope
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Confidence Interval for True Slope

Steps:
» Bootstrap the scatter plot
» Find the slope of the regression line through bootstrapped plot
» Repeat
» Draw the empirical histogram of all the generated slopes
» Get the “middle 95%" interval

That's an approximate 95% confidence
interval for the slope of the true line




Inference for the True Slope

Null hypothesis: The slope of the true line 1s O

Alternative hypothesis: No, it's not
Method:

» Construct a bootstrap confidence interval for the true slope

» If the interval doesn’t contain O, reject the null hypothesis

» If the interval does contain O, there i1sn't
enough evidence to reject the null hypothesis




Confidence Intervals for Testing

Null hypothesis: A parameter Is equal to a specified value

Alternative hypothesis: No, It's not
Method:

» Construct a confidence interval for the parameter

» If the specified value isn't in the interval, reject the null
hypothesis

» If the interval does contain O, there i1sn't
enough evidence to reject the null hypothesis




