
Big Data Analysis with
Apache Spark

UC#BERKELEY

This Lecture
Resilient Distributed Datasets (RDDs)

Creating an RDD

Spark RDD Transformations and Actions

Spark RDD Programming Model

Spark Shared Variables

Review: Python Spark (pySpark)
We are using the Python programming interface to Spark
(pySpark)

pySpark provides an easy-to-use programming abstraction
and parallel runtime:
» “Here’s an operation, run it on all of the data”

DataFrames are the key concept

http://spark.apache.org/docs/latest/api/python/
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Review: Spark Driver and Workers
A Spark program is two programs:
» A driver program and a workers program

Worker programs run on cluster nodes or in
local threads

DataFrames are distributed across workers

Your application
(driver program)

sqlContext

Local
threads

Cluster
manager

Worker
Spark

executor

Worker
Spark

executor

Amazon S3, HDFS, or other storage

SparkContext

Review: Spark and SQL Contexts
A Spark program first creates a SparkContext object
» SparkContext tells Spark how and where to access a cluster,
» pySpark shell, Databricks CE automatically create SparkContext
» iPython and programs must create a new SparkContext

The program next creates a sqlContext object

Use sqlContext to create DataFrames

In the labs, we create the SparkContext and sqlContext for you

http://ipython.org/

Review: DataFrames
The primary abstraction in Spark
» Immutable once constructed
» Track lineage information to efficiently recompute lost data
» Enable operations on collection of elements in parallel

You construct DataFrames
» by parallelizing existing Python collections (lists)
» by transforming an existing Spark or pandas DFs
» from files in HDFS or any other storage system  

http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Review: DataFrames
Two types of operations: transformations and actions

Transformations are lazy (not computed immediately)

Transformed DF is executed when action runs on it

Persist (cache) DFs in memory or disk

Resilient Distributed Datasets
Untyped Spark abstraction underneath DataFrames:
» Immutable once constructed
» Track lineage information to efficiently recompute lost data
» Enable operations on collection of elements in parallel

You construct RDDs
» by parallelizing existing Python collections (lists)
» by transforming an existing RDDs or DataFrame
» from files in HDFS or any other storage system

http://spark.apache.org/docs/latest/api/python/pyspark.html

http://spark.apache.org/docs/latest/api/python/pyspark.html
http://spark.apache.org/docs/latest/api/python/pyspark.html

Programmer specifies number of partitions for an RDD

item-1
item-2
item-3
item-4
item-5

item-6
item-7
item-8
item-9
item-10

item-11
item-12
item-13
item-14
item-15

item-16
item-17
item-18
item-19
item-20

item-21
item-22
item-23
item-24
item-25

RDD split into 5 partitions

more partitions = more parallelism

RDDs

Worker
Spark

executor

Worker
Spark

executor

Worker
Spark

executor

(Default value used if unspecified)

RDDs
Two types of operations: transformations and actions

Transformations are lazy (not computed immediately)

Transformed RDD is executed when action runs on it

Persist (cache) RDDs in memory or disk

When to Use DataFrames?
Need high-level transformations and actions, and want high-level 
 control over your dataset

Have typed (structured or semi-structured) data

You want DataFrame optimization and performance benefits
» Catalyst Optimization Engine

• 75% reduction in execution time
» Project Tungsten off-heap memory management

• 75+% reduction in memory usage (less GC)

DataFrame Performance (I)
Faster than RDDs

Benefits from Catalyst optimizer

Runtime (seconds)

Interpreted
Hand-written

Generated
0 10 20 30 40

DataFrame Performance (II)
Benefits from  
 Project Tungsten

Ru
n

tim
e

(s
ec

s)

0

300

600

900

1200

Data set size (relative)

1x 2x 4x 8x 16x

Default
Code Gen
Tungsten onheap
Tungsten offheap

DataFrames

RDDs

Data Size (GB)
0 15 30 45 60

RDD

Memory Usage when Caching

When to Use RDDs?
Need low-level transformations and actions, and want low-level 
 control over your dataset

Have unstructured or schema-less data (e.g., media or text streams)

Want to manipulate your data with functional programming constructs 
 other than domain specific expressions

You don’t want the optimization and performance  
 benefits available with DataFrames

mapped RDDmapped RDDfiltered RDDfiltered RDD

Working with RDDs
Create an RDD from a data source:

Apply transformations to an RDD: map filter

Apply actions to an RDD: collect count

filtered RDD

<list>

filter
mapped RDD

map

Result

collect

collect action causes parallelize, filter,
and map transforms to be executed

RDDRDDRDD<list>parallelize

Creating an RDD
Create RDDs from Python collections (lists)

>>>!data!=![1,!2,!3,!4,!5]

>>>!data

[1,!2,!3,!4,!5]

>>>!rDD!=!sc.parallelize(data,!4)1

>>>!rDD1

ParallelCollectionRDD[0]!at!parallelize!at!PythonRDD.scala:229

No computation occurs with sc.parallelize()
• Spark only records how to create the RDD with

four partitions

Creating RDDs
From HDFS, text files, Hypertable, Amazon S3, Apache Hbase,  
 SequenceFiles, any other Hadoop InputFormat, and directory or 
 glob wildcard: /data/201404*

>>> distFile = sc.textFile("README.md", 4)

>>> distFile

MappedRDD[2] at textFile at  

 NativeMethodAccessorImpl.java:-2

http://hypertable.org/
http://aws.amazon.com/s3/
http://hbase.apache.org/

Creating an RDD from a File
distFile!=!sc.textFile("...",!4)

RDD distributed in 4 partitions
Elements are lines of input
Lazy evaluation means 
 no execution happens now

Spark Transformations
Create new datasets from an existing one

Use lazy evaluation: results not computed right away –  
 instead Spark remembers set of transformations applied  
 to base dataset
» Spark optimizes the required calculations
» Spark recovers from failures and slow workers

Think of this as a recipe for creating result

Some Transformations

Transformation Description

map(func) return a new distributed dataset formed by passing
each element of the source through a function func

filter(func) return a new dataset formed by selecting those
elements of the source on which func returns true

distinct([numTasks])) return a new dataset that contains the distinct
elements of the source dataset

flatMap(func) similar to map, but each input item can be mapped
to 0 or more output items (so func should return a
Seq rather than a single item)

Transformations
>>>!rdd!=!sc.parallelize([1,!2,!3,!4])
>>>!rdd.map(lambda!x:!x!*!2)!
RDD:![1,!2,!3,!4]!→![2,!4,!6,!8]!

>>>!rdd.filter(lambda!x:!x!%!2!==!0)
RDD:![1,!2,!3,!4]!→![2,!4]

>>>!rdd2!=!sc.parallelize([1,!4,!2,!2,!3])
>>>!rdd2.distinct()
RDD:![1,!4,!2,!2,!3]!→![1,!4,!2,!3]

Function literals (green)
are closures automatically
passed to workers

Transformations
>>>!rdd!=!sc.parallelize([1,!2,!3])
>>>!rdd.Map(lambda!x:![x,!x+5])
RDD:![1,!2,!3]!→![[1,!6],![2,!7],![3,!8]]

>>>!rdd.flatMap(lambda!x:![x,!x+5])
RDD:![1,!2,!3]!→![1,,6,!2,!7,!3,!8]

Function literals (green)
are closures automatically
passed to workers

Transforming an RDD
lines!=!sc.textFile("...",!4)!

comments!=!lines.filter(isComment)

commentslines
Lazy evaluation means
nothing executes – Spark
saves recipe for
transforming source

Spark Actions
Cause Spark to execute recipe to transform source

Mechanism for getting results out of Spark

Some Actions

Action Description

reduce(func) aggregate dataset’s elements using function func.
func takes two arguments and returns one, and is
commutative and associative so that it can be
computed correctly in parallel

take(n) return an array with the first n elements
collect() return all the elements as an array

WARNING: make sure will fit in driver program
takeOrdered(n,!key=func) return n elements ordered in ascending order or

as specified by the optional key function

Getting Data Out of RDDs
>>>!rdd!=!sc.parallelize([1,!2,!3])
>>>!rdd.reduce(lambda!a,!b:!a!*!b)
Value:!6!

>>>!rdd.take(2)
Value:![1,2]!#!as!list!

>>>!rdd.collect()
Value:![1,2,3]!#!as!list

Getting Data Out of RDDs

>>>!rdd!=!sc.parallelize([5,3,1,2])!
>>>!rdd.takeOrdered(3,!lambda!s:!Z1!*!s)
Value:![5,3,2]!#!as!list!

Spark Key-Value RDDs
Similar to Map Reduce, Spark supports Key-Value pairs

Each element of a Pair RDD is a pair tuple

>>>!rdd!=!sc.parallelize([(1,!2),!(3,!4)])
RDD:![(1,!2),!(3,!4)]

Some Key-Value Transformations

Key-Value Transformation Description

reduceByKey(func) return a new distributed dataset of (K, V) pairs where
the values for each key are aggregated using the given
reduce function func, which must be of type (V,V) ➔ V

sortByKey() return a new dataset (K, V) pairs sorted by keys in
ascending order

groupByKey() return a new dataset of (K, Iterable<V>) pairs

Key-Value Transformations
>>>!rdd!=!sc.parallelize([(1,2),!(3,4),!(3,6)])!
>>>!rdd.reduceByKey(lambda!a,!b:!a!+!b)!
RDD:![(1,2),!(3,4),!(3,6)]!→![(1,2),!(3,10)]

>>>!rdd2!=!sc.parallelize([(1,'a'),!(2,'c'),!(1,'b')])
>>>!rdd2.sortByKey()!
RDD:![(1,'a'),!(2,'c'),!(1,'b')]!→

!!!!!!!!!!!!![(1,'a'),!(1,'b'),!(2,'c')]!

Key-Value Transformations
>>>!rdd2!=!sc.parallelize([(1,'a'),!(2,'c'),!(1,'b')])!
>>>!rdd2.groupByKey()!
RDD:![(1,'a'),!(1,'b'),!(2,'c')]!→

!!!!!!!!!!!!![(1,['a','b']),!(2,['c'])]!

Be careful using groupByKey() as
it can cause a lot of data movement
across the network and create large
Iterables at workers

Spark Programming Model
lines!=!sc.textFile("...",!4)!

print!lines.count()

#

#

#

#

lines count() causes Spark to:
• read data
• sum within partitions
• combine sums in driver

Spark Programming Model
lines!=!sc.textFile("...",!4)!
comments!=!lines.filter(isComment)!
print!lines.count(),!comments.count()

commentslines Spark recomputes lines:
• read data (again)
• sum within partitions
• combine sums in

driver

#

#

#

#

#

#

#

#

Caching RDDs
lines!=!sc.textFile("...",!4)!
lines.cache(),#,save,,don't,recompute!,
comments!=!lines.filter(isComment)!
print!lines.count(),comments.count()

commentslines
#

#

#

#

#

#

#

#

RAM

RAM

RAM

RAM

Spark Program Lifecycle with RDDs
1. Create RDDs from external data or parallelize a

collection in your driver program

2. Lazily transform them into new RDDs

3. cache() some RDDs for reuse

4. Perform actions to execute parallel  
computation and produce results

pySpark Closures
Spark automatically creates closures for :

» Functions that run on RDDs at executors
» Any global variables used by those executors

One closure per executor
» Sent for every task
» No communication between executors
» Changes to global variables at executors are not sent to driver

Driver
Executor

Executor

Executor

Executor

functions
globals

functions
globals

functions
globals

functions
globals

Consider These Use Cases
Iterative or single jobs with large global variables
» Sending large read-only lookup table to executors
» Sending large feature vector in a ML algorithm to executors

Counting events that occur during job execution
» How many input lines were blank?
» How many input records were corrupt?

Consider These Use Cases
Iterative or single jobs with large global variables
» Sending large read-only lookup table to executors
» Sending large feature vector in a ML algorithm to executors

Counting events that occur during job execution
» How many input lines were blank?
» How many input records were corrupt?

Problems:
• Closures are (re-)sent with every job
• Inefficient to send large data to each worker
• Closures are one way: driver → worker

pySpark Shared Variables
Broadcast Variables
» Efficiently send large, read-only value to all executors
» Saved at workers for use in one or more Spark operations
» Like sending a large, read-only lookup table to all the nodes

Accumulators
» Aggregate values from executors back to driver
»Only driver can access value of accumulator
» For tasks, accumulators are write-only
» Use to count errors seen in RDD across executors

Σ
+ + +

https://spark.apache.org/docs/latest/programming-guide.html#broadcast-variables
https://spark.apache.org/docs/latest/programming-guide.html#broadcast-variables
https://spark.apache.org/docs/latest/programming-guide.html#accumulators

Broadcast Variables
Keep read-only variable cached on executors
» Ship to each worker only once instead of with each task

Example: efficiently give every executor a large dataset
Usually distributed using efficient broadcast algorithms

At!the!driver:
>>>!broadcastVar!=!sc.broadcast([1,!2,!3])!

At!an!executor!(in!code!passed!via!a!closure)
>>>!broadcastVar.value1
[1,!2,!3]

Broadcast Variables Example
Country code lookup for HAM radio call signs

#,Lookup,the,locations,of,the,call,signs,on,the  
#,RDD,contactCounts.,We,load,a,list,of,call,sign,,
#,prefixes,to,country,code,to,support,this,lookup,
signPrefixes!=!loadCallSignTable()!!

def1processSignCount(sign_count,!signPrefixes): 
!!!!country!=!lookupCountry(sign_count[0],!signPrefixes)
!!!!count!=!sign_count[1] 
!!!!return1(country,!count)!

countryContactCounts!=!(contactCounts!

!!!!!!!!!!!!!!!!!!!!!!!!.map(processSignCount)
!!!!!!!!!!!!!!!!!!!!!!!!.reduceByKey((lambda1x,!y:!x+!y)))!

From: http://shop.oreilly.com/product/0636920028512.do

Expensive to send large table
(Re-)sent for every processed file

http://shop.oreilly.com/product/0636920028512.do
http://shop.oreilly.com/product/0636920028512.do

Broadcast Variables Example
Country code lookup for HAM radio call signs

#,Lookup,the,locations,of,the,call,signs,on,the  
#,RDD,contactCounts.,We,load,a,list,of,call,sign,,
#,prefixes,to,country,code,to,support,this,lookup,
signPrefixes!=!sc.broadcast(loadCallSignTable())!

def1processSignCount(sign_count,!signPrefixes): 
!!!!country!=!lookupCountry(sign_count[0],!signPrefixes.value)
!!!!count!=!sign_count[1] 
!!!!return1(country,!count)!

countryContactCounts!=!(contactCounts!

!!!!!!!!!!!!!!!!!!!!!!!!.map(processSignCount)
!!!!!!!!!!!!!!!!!!!!!!!!.reduceByKey((lambda1x,!y:!x+!y)))!

From: http://shop.oreilly.com/product/0636920028512.do

Efficiently sent once to executors

http://shop.oreilly.com/product/0636920028512.do
http://shop.oreilly.com/product/0636920028512.do

Accumulators
Variables that can only be “added” to by associative op
Used to efficiently implement parallel counters and sums
Only driver can read an accumulator’s value, not tasks

Σ
+ + +

>>>!accum!=!sc.accumulator(0)
>>>!rdd!=!sc.parallelize([1,!2,!3,!4])
>>>!def!f(x):
>>>!!!global!accum!

>>>!!!accum!+=!x!!!

>>>!rdd.foreach(f)
>>>!accum.value1
Value:!10

Accumulators Example
Counting empty lines

Σ
+ + +

file!=!sc.textFile(inputFile) 
#,Create,Accumulator[Int],initialized,to,0,,
blankLines!=!sc.accumulator(0)!!

def1extractCallSigns(line):
!!!!global1blankLines!#,Make,the,global,variable,accessible
,,,,if1(line!==!""):!
!!!!!!!!blankLines!+=!1!!

1111return1line.split("!")
!!

callSigns!=!file.flatMap(extractCallSigns)!!
print1"Blank!lines:!%d"!%!blankLines.value1

Accumulators
Tasks at executors cannot access accumulator’s values
Tasks see accumulators as write-only variables
Accumulators can be used in actions or transformations:» Actions: each task’s update to accumulator is applied only once
» Transformations: no guarantees (use only for debugging)

Types: integers, double, long, float» See lab for example of custom type

Σ
+ + +

WorkerWorkerWorker

code RDD

R D D
Programmer
specifies number
of partitions

Summary

Master parameter specifies number of executors

Driver program

code RDD code RDD

Spark automatically
pushes closures to Spark
executors at workers

Review: The Big Picture

Extract
Transform

Load

Files: This lecture

52

What is a File?
A file is a named sequence of bytes
» Typically stored as a collection of pages (or blocks)

A filesystem is a collection of files organized within  
 a hierarchical namespace
» Responsible for laying out those bytes on physical media
» Stores file metadata
» Provides an API for interaction with files

Standard operations
• open()/close()
• seek()
• read()/write()

http://www.clipshrine.com/Document-Icon-8906-medium.html

http://www.clipshrine.com/Document-Icon-8906-medium.html
http://www.clipshrine.com/Document-Icon-8906-medium.html

Files: Hierarchical Namespace
On Mac and Linux, / is the root of a filesystem
On Windows, \ is the root of a filesystem
Files and and directories have associated permissions
Files are not always arranged in a hierarchically» Content-addressable storage (CAS)
»Often used for large multimedia collections

Considerations for a File Format

Data model: tabular, hierarchical, array
Physical layout
Field units and validation
Metadata: header, side file, specification, other?
Plain text (ASCII, UTF-8, other) or binary
Delimiters and escaping
Compression, encryption, checksums?
Schema evolution

Performance!

File Performance Considerations
Read versus write performance

Plain text versus binary format

Environment: Pandas (Python) versus Scala/Java

Uncompressed versus compressed

55

File Performance

Read Time (Text) Write Time (Text) Read Time 
(Binary)

Write Time 
(Binary)

Pandas (Python) 36 secs 45 secs ** **

Scala/Java 18 secs 21 secs 1-6* secs 1-6* secs

** Pandas doesn’t have a binary file I/O library
 (Python performance depends on library you use)

* 6 seconds is the time for sustained read/write  
 (often faster due to system caching)

Read-Write Times Comparable

626 MB text file
787 MB binary file

File Performance

Read Time (Text) Write Time (Text) Read Time 
(Binary)

Write Time 
(Binary)

Pandas (Python) 36 secs 45 secs ** **

Scala/Java 18 secs 21 secs 1-6* secs 1-6* secs

Binary I/O much faster than text

** Pandas doesn’t have a binary file I/O library
 (Python performance depends on library you use)

* 6 seconds is the time for sustained read/write  
 (often faster due to system caching)

626 MB text file
787 MB binary file

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

Write times much larger than read

Scala/Java language

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

Large range of compression times

Scala/Java language

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

Large range of compression times

Scala/Java language

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

Small range (15%) of  
compressed file sizes

Scala/Java language

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

Binary I/O still much  
faster than text

Scala/Java language

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

Binary I/O still much  
faster than text

Scala/Java language

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

LZ4 compression ≈ raw I/O speed

Scala/Java language

65

File Performance - Compression
Binary File Read Time Write Time File Size

Gzip level 6  
(Java default)

4 secs 75 secs 286 MB

Gzip level 3 4 secs 20 secs 313 MB
Gzip level 1 4 secs 14 secs 328 MB
LZ4 fast 2 secs 4 secs 423 MB
Raw binary file 1-6 secs 1-6 secs 787 MB

Text File Read Time Write Time File Size
Gzip level 6 (default) 26 secs 98 secs 243 MB

Gzip level 3 25 secs 46 secs 259 MB
Gzip level 1 25 secs 33 secs 281 MB
LZ4 fast 22 secs 24 secs 423 MB
Raw text file 18 secs 21 secs 626 MB

LZ4 compression ≈ raw I/O speed

Scala/Java language

File Performance - Summary
• Uncompressed read and write times are comparable

• Binary I/O is much faster than text I/O

• Compressed reads much faster than compressed writes
» LZ4 is better than gzip
» LZ4 compression times approach raw I/O times

Lab: Text Analysis and Entity Resolution
Entity Resolution (ER) or Record linkage:
» Common, yet difficult problem in data cleaning and integration
» ER is term used by statisticians, epidemiologists, and historians
» Describes process of joining records from one data source with

those from another dataset that describe same entity  
(e.g., data files, books, websites, databases)

A dataset that has undergone ER is  
 referred to as being cross-linked

https://en.wikipedia.org/wiki/Record_linkage

Entity Resolution
Use ER when joining datasets with entities that do not share
a common identifier (e.g., DB key, URI, ID number)
» Also, when they do share common ID, but have differences, such as

record shape, storage location, and/or curator style

Entity Resolution Lab
Web scrape of Google Shopping and Amazon product listings

Google listing: » clickart 950000 - premier image pack (dvd-rom) massive collection of images & fonts for
all your design needs ondvd-rom!product informationinspire your creativity and perfect
any creative project with thousands ofworld-class images in virtually every style. plus
clickart 950000 makes iteasy for …

Amazon listing:» clickart 950 000 - premier image pack (dvd-rom)

Visually, we see these listings are the same product
How to algorithmically decide?

https://code.google.com/p/metric-learning/

https://code.google.com/p/metric-learning/
https://code.google.com/p/metric-learning/

Model and Algorithm
Model ER as Text Similarity
»We will use a weighted bag-of-words comparison

• Some tokens (words) are more important than others
• Sum up the weights of tokens in each document

Model and Algorithm
Model ER as Text Similarity
»We will use a weighted bag-of-words comparison

• Some tokens (words) are more important than others
• Sum up the weights of tokens in each document

How to assign weights to tokens?
» Term-Frequency/Inverse-Document-Frequency  

or TF-IDF for short

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

TF-IDF
Term-Frequency
» Rewards tokens that appear many times in the same document 

 = (# times token appears)/(total # of tokens in doc)

TF-IDF
Term-Frequency
» Rewards tokens that appear many times in the same document 

 = (# times token appears)/(total # of tokens in doc)

Inverse-Document-Frequency
» rewards tokens that are rare overall in a dataset 

 = (total # of docs)/(#of docs containing token)

TF-IDF
Term-Frequency
» Rewards tokens that appear many times in the same document 

 = (# times token appears)/(total # of tokens in doc)

Inverse-Document-Frequency
» rewards tokens that are rare overall in a dataset 

 = (total # of docs)/(#of docs containing token)

Total TF-IDF value for a token
» Product of its TF and IDF values for each doc
»Need to remove stopwords (a, the, …) from docs

Token Vectors
Formal method for text similarity (string distance metric):
» Treat each document as a vector in high dimensional space

Each unique token is a dimension
» Token weights are magnitudes in their respective token dimensions

Simple count-based vector example
» Document: “Hello, world! Goodbye, world!”
» Vector:

Token hello goodbye world

Count 1 1 2

Cosine Similarity

Compare two docs by computing cosine of angle 
 between vectors

Small angle (large cosine) means docs share many 
 tokens in common

Large angle (small cosine) means they have  
 few words in common

