Introduction to Apache Spark

AAAAAA <"(\Z €databricks

lab BerkeleyX

This Lecture

Big Data Problems: Distributing Work, Failures, Slow Machines
HW/SWV for Big Data: Map Reduce and Apache Spark

The Structured Query Language (SQL)

SparkSQL

Apache Spark Resources and Community

Apache Web Server Log Files

What i1s Apache Spark!?

Scalable, efficient analysis of Big Data

What i1s Apache Spark!?

Scalable, efficient analysis of Big Data

This lecture

The Big Data Problem

Data growing faster than CPU speeds

Data growing faster than per-machine storage

Can't process or store all data on one machine

\

—— Google Datacent/ \\\

— = e _ AN\

The Opportunity

Cloud computing Is a game-changer!
Provides access to low-cost computing and storage
Costs decreasing every year

The challenge is programming the resources

What i1s Apache Spark!?

e Scalable, efficient analysis of Big Data

A Brief History of Big Data Processing

LI
CICIC
CCIC

Lots of hard drives ... and C

Yesterday's Hardware for Big Data

One big box! I” |
(1990's solution) B
» All processors share memory

Very expensive

» Low volume

» All “premium’™ hardware
And, still not big enough!

Image: Wikimedia Commons / User:Tonusamuel

ardware for Big Data

Consumer-grade hardware
Not “gold plated”

Many deSktOp—lIl(e servers Image: Stverv;r;/F:Iickr
Easy to add capacity
Cheaper per CPU/disk

But, requires complexity in software

? —
-2
-5

Problems with Cheap Hardware

Failures, Google’'s numbers: g =35 =
|-5% hard drives/year - o My 1
0.2% DIMMs/year R === |\ =

Network speeds versus shared memory
Much more latency
Network slower than storage

Uneven performance

What's Hard About Cluster Computing?

How do we split work across machines?

Let's look at a simple task: word counting

How do you count the number of occurrences of each word
N a document!

“I'am Sam : .33
| am Sam am.
Sam: 3
Sam | am
- do: |
Do you like
you: |

?H
Green eggs and ham e |

One Approach: Use a Hash Table

“I am Sam {}
| am Sam

Sam | am

Do you like
Green eggs and ham?” -

One Approach: Use a Hash Table

“[fam Sam {\ :1}
| am Sam
Sam | am

Do you like
Green eggs and ham?” -

One Approach: Use a Hash Table

“[fam| Sam {\: 1 |
| am Sam 1
Sam | am arm. }

Do you like
Green eggs and ham?” -

One Approach: Use a Hash Table

"I am [Sam {\: 1 |
| am Sam 1
Sam | am dam. 1,

Do you like Sam: 1 }
Green eggs and ham?” -

One Approach: Use a Hash Table

"I am Sam {\: 2,
[lam Sam 1
Sam | am dam. 1,

Do you like Sam: 1 }
Green eggs and ham?” -

What it the Document is Really Big?

-
“I'am Sam

| am Sam >§>}

Sam | am

Green eggs and ham? |
| do not like them {"‘?}

e Sara-|-apa------------ <
| do not like

Green eggs and ham ¢ %\:‘_’}

1 Would you_like them . }

Here or there? %‘:?},

What it the Document is Really Big?

“I'am Sam
| am Sam
Sam | am

Green eggs and ham?
| do not like them

| do not like
Green eggs and ham
1 Would you like them .

Here or there!?

Machines |-

4

{I: 3,
am: 3,
Sam: 3

Machine 5

{do:2, ... } |e—

N

{Sam: |,

)

{I: 6,
am: 4,
Sam: 4,
do: 3

)

What's the
problem with this
approach?

>
—
/

{Would:1,
)

What it the Document is Really Big?

Machines |- 4
“I'am Sam A (3 | Results have to fit
| am Sam > %‘E:} am: 3 Machine 5 on one machine
Sam | am Sam: 3
""""" Do you like ™ {I:6,
Green eggs and ham? | { do: D am: 4,
| do not like them %\:?} otz Sam: 4,
————————————— Sar--ar-—--K do: 3
| do not like S |)
Green eggs and ham ¢ %\:‘_’} { L)

1 Would you_like them .

Here or there? } %‘:?} {Would:1,

What it the Document is Really Big?

T am) Can add aggregation
dam >am {I:B, '
| am Sam . %3% 3, layers but results St///h |
Sam | am Sam: 3 04 must fit on one machine
“““““ Do you Tike ™ o 3
Green eggs and ham? 4o)) 6
| do not like them >§:?} o2, ... }

am: 3,

R Sarm-|-ara------------ < % you: 2,
| do not like Sam: | / not: |,
Green eggs and ham ¢ %\:‘_’} {) {:2,)

1 Would you_like them . "{g}' do: I,

Here or there? } %‘:?} {Would:, v

What it the Document is Really Big?

“l am Sam) ol e Use Divide and
| am Sam >~ %} ()) Conquerl!
Sam | am
| Doyeulike (do: 1,
Green eggs and ham? | you: |,
| do not like them %\:?} o}
————————————— Sar--ar-—--K .

{Would: [,

| do not like
Green eggs and ham ¢ %\:‘_’} YOU:}l’

1 Would you.like them.. :
Here or there!? Would: |
s } %\’g} you: |,

7oL

achines |- 4

What it the Document is Really Big?

“l am Sam) ol e Use Divide and
| am Sam >~ %E} ()) Conquerl!
Sam | am =
| Doyoulike A {do: I, (a5
Green eggs and ham? you: |, Sam 4.
| do not like them > {?} Ny e
1+ Sara-t-ar-——— < —X
| do not like {\/\/oullci. g {you: 2,
Green eggs and ham ¢ %\:‘_’} YOU'} !)
1 Would you.like them.. [/
Here or there!? .
} ‘%}3’ {ng,'cf' . {Would: I,
I "y o
achines [-4 Machines [- 4

What it the Document is Really Big?

N Sarm--ara--—--

“I'am Sam
| am Sam
Sam | am

Green eggs and ham
| do not like them

| do not like
Green eggs and ha
1+-Would you.like the
Here or there!?

{am:5,
Sam:4, ... }

Use Divide and
Conquerl!

{you: 2,
i

{Would: [,
i

What it the Document is Really Big?

“l'am Sam
| am Sam I Google
__________ >amlam > Map Reduce 2004
Do you like !
Green eggs and ham %
| do not like them ! Apache Hadoop
>
/

REDBEE

? . Sara-|-ar---------
| do not like
Green eggs and ha
1+-Would you.like the
Here or there!?

N
i
i

http://research.google.com/archive/mapreduce.html|

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html

Map Reduce for Sorting

N {1,

“ am Sam _ {l:would, 2: (f ;
|, What word Is
| am Sam > %}} aT_} you, ... } |
Sarn | am | - used most?
| Doyoulike A {do: I, (3:do
Green eggs and ham? | you: |, 4 Samy
| do not like them {?} Ny A,
1+ Sara-t-ar-——— < Woulc IX\
| do not like odic T
Green eggs and ham ¢ %\:‘_’} YOU:}l’ {>ram, ...}
1 Would you.like them.. [/
Here or there? Would: |
...” }% you:l, {6'

7oL i

What's Hard About Cluster Computing?

How to divide work across machines!
» Must consider network, data locality
» Moving data may be very expensive

How to deal with failures?
» | server fails every 3 years = with 10,000 nodes see |0 faults/day

» Even worse: stragglers (not failed, but slow nodes)

How Do We Deal with Faillures!?

“I'am Sam
| am Sam
Sam | am

Do you like {do: I,

Green eggs and ham? | you: |,
| do not like them %\:?} ™

N Sa-l-ar—--- <
{Would: [,

| do not like
Green eggs and ham ¢ %\:‘_’} YOU:}l’

1 Would you_like them . '
Here or there? } %‘:?} fWould: |

"’ you: |,

7oL

How Do We Deal with Machine Failures!?

“I'am Sam
| am Sam
Sam | am

Green eggs and ham?
| do not like them
e Sara-|-apa------------
| do not like
Green eggs and ham
1 Would you_like them .

Here or there!?

$c8

{1,

am: |,

»

{do: I,
you: |,

)

{Would: [,
you: |,

)

{Would: [,
you: |,

)

Launch another task!

How Do We Deal with Slow Tasks!?

“I'am Sam

| am Sam >§>}

Sam | am

Green eggs and ham? |
| do not like them {"‘?}

e Sara-|-apa------------ <
| do not like

Green eggs and ham ¢ %\:‘_’}

1 Would you_like them . }

Here or there? %‘:?},

How Do We Deal with Slow Tasks!?
N god o

“I am Sam .
| am Sam >~ %\E} x

Sam | am

| Do youlike (do: 1,
Green eage and ham? g% vou | Launch another task!

| do not like them o)
N Sa-l-ar—--- <
{Would: [,

| do not like
Green eggs and ham ¢ %\:‘_’} YOU:}l’

1 Would you_like them .
Here or there? } %‘:?} fWould: |

you: |,

7oL

What i1s Apache Spark!?

e Scalable, efficient analysis of Big Data

Datacenter Organization

a9
CPUs: i I | <|O Glg/a

W
00 MB/S/ N@ MB/s
| 4

4

3-12 ms random O.] ms random
access access

$0.05 per GB $0.45 per GB

Datacenter Organization

| Gb/s or 125 MB/s

»

: > Network

A

00 MB/ | Gb/s or 125 MB/s | Nodes in
S QU0 MB/s same rack
y

4

v
1
1
1

3-12 ms random 0O.] ms random
access access

$0.05 per GB $0.45 per GB 7

Datacenter Organization

| Gb/s or 125 MB/s

W
No MBY/s

4

3-12 ms random 0O.] ms random
access access

$0.05 per GB $0.45 per GB

»

Network

| Gb/s or 125 MB/s

Nodes in
same rack

0.1 Gb/s

Nodes in
another
rack

Map Reduce: Distributed Execution

MAP

REDUCE

o

8—»

o

-

C
5%

b

o8

b‘%

|. o8

Each stage
passes through
the hard drives

Map Reduce: [terative Jobs

terative jobs involve a lot of disk I/O for each repetition

Disk /O s
very slow!

Apache Spark Motivation

e Using Map Reduce for complex jobs, interactive queries
and online processing mvolves ots of disk I/O

=ry -
s el

g Query 3. -
Interactive mining Stream processing

Also, iterative jobs

Disk 1/O is very slow

Tech Trend: Cost of Memory

Historical Cost of Computer Memory and Storage

1.00E+09 -

1.00E+08 N i"v\ =

SURSLS; Lower cost means can
— put more memory In
==== 12010:; each server

; \+
= ¢ i
I O "
1.00E+02 + !
e {
Ml

1.00E+01

i

1.00E+07

1.00E+06 -+
F ‘4k
A

1.00E+05

1.00E+04 —o——

1.00E+00

PRICE

1.00€-01 -

i 1
I | | SONE
[(] |

1.00E-03 +

1.00E-04 4=

1.00E-05 + t t
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

YEAR

http://www.jcmit.com/mem?20 [4.htm

http://www.jcmit.com/mem2014.htm
http://www.jcmit.com/mem2014.htm
http://www.jcmit.com/mem2014.htm

Modern Hardware for Big Data

LI

_ots of hard drives ... and CPUs

... and memory!

Opportunity

* Keep more data in-memory

* Create new distributed execution engine:

Spark

http://people.csail.mit.edu/matei/papers/20 | O/hotcloud_spark.pdf

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

Use Memory Instead of Disk

HDFS HDFS HDFS HDFS

read write read write
‘)Ej__é_ 2

—> result |

Input

HDFS

- query 2 mg result 2
qQUErY S result 3

In-Memory Data Sharing

HDFS
Input
one-time ~result |
processing &
Distributed ~result 3

Input

memory

[| 0-100x faster than network and dis|<J

Spark and Map Reduce Differences

Apache Hadoop |Apache Spark
Map Reduce

Storage Disk only In-memory or on disk

Operations Map and Reduce Many transformation and
actions, including Map and

Reduce
Execution Batch Batch, interactive,
model streaming

Languages Java Scala, Java, R, and Python

Other Spark and Map Reduce Differences

Generalized patterns for computation
= provide unified engine for many use cases

= require 2-5x less code

Lazy evaluation of the lineage graph
= can optimize, reduce wait states, pipeline better

Lower overhead for starting jobs

Less expensive shuffles

In-Memory Can Make a Big Ditference

(2013) Two riterative Machine Learning algorithmes:
K-means Clustering

| | | wu Hadoop MR
2] Spark
4 - op
0 35 70 105 | 40sec
Logistic Regression
I I I
_ g
096 P

0 20 40 60 80 sec

First Public Cloud Petabyte Sort (2014)

Daytona Gray [00TB

sort benchmark record
(tied for [t place)

Hadoop MR Spark Spark

Record Record 1PB
Data Size 102.5TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
Nodes 2100 206 190
Cores 50400 physical 6592 virtualized |6080 virtualized
Cluster disk 3150 GB/s

/ 618 GB/s 570 GB/s

throughput (est.)
Sort Benchmark

Yes Yes No

Daytona Rules

Network

dedicated data
center, 10Gbps

virtualized (EC2)
10Gbps network

virtualized (EC2)
10Gbps network

Sortrate

1.42 TB/min

4.27 TB/min

4.27 TB/min

Sort rate/node

0.67 GB/min

20.7 GB/min

22.5 GB/min

http://databricks.com/blog/2014/1 1/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
http://sortbenchmark.org/

Recent Spark Performance Optimizations

Spark has added two key performance optimizations
» In addition to using memory instead of disk

Catalyst Optimization Engine

» /5% reduction in execution time

Project Tungsten off-heap memory

Management
» /5+% reduction in memory usage (less GC)

&Catalyst: Shared Optimization & Execution

. Logical Physical
PSEART Analysis Optimization Planning

DataFrame Unrlesolved Logical Plan Opj: linlZete Physical
Logical Plan Logical Plan Plans

DatalFrames, Datasets, and Spark SQL
share the same optimization/execution pipeline

Code
Generation

Selected

Physical Plan RDDS

Cost Model

Java Virtual Machine Object Overhead
“Sbed” Native: 4 bytes with UTF-8 encoding

Java: 48 bytes

java.lang.String object internals:
OFFSET SIZE

0
4
8
12
16
20

Instance size: 24 bytes (reported by Instrumentation API)

4

i O N N NN

TYPE

char[]
int
int

DESCRIPTION VALUE
(object header) ... '
(object header) ... 12 byte object header

(object header) ...
String.value [] ~}—20 bytes data + overhead

. w—
String.hash 0 _J g byte hashcode
String.hash32 0

Project Tungsten's Compact Encoding
(123,"big","data")

l ‘ ‘ Offset to data
0X0 _
| 1
T Offset to data Field lengths

Null bitmap

Review:; Key Data Management Concepts

* A data model s a collection of concepts for describing data

* A schema is a description of a particular collection of data, using a
given data model

A relational data model is the most used data model
» Relation, a table with rows and columns
» Every relation has a schema defining fields in columns

Review: Key Data Management Concepts

* A data model s a collection of concepts for describing data

* A schema is a description of a particular collection of data, using a
given data model

A relational data model is the most used data model
» Relation, a table with rows and columns
» Every relation has a schema defining fields in columns

Structured
(schema-first)

Relational
Database

Formatted
Messages

The Structure Spectrum

This lecture

Semi-Structured
(schema-later)

Documents
XML
JSON

Tagged Text/Media

Unstructured
(schema-never)

Plain Text

Media

Relational Database: Definitions

 Relational database: a set of relations

* [wo parts to a Relation:
Schema: specifies name of relation, plus each column’s name and type

Students(sid: string, name: string, email: string,
age: integer, gpa: real)

Instance: the actual data at a given time
e #rows = cardinality
» #fields = degree

What is a Database?

* A large organized collection of data
» Transactions used to modify data

* Models real world, e.g,, enterprise
» Entities (e.g., teams, games)
» Relationships, e.g.,
» A plays against B in The World Cup

Large Databases

US Internal Revenue Service: |50 Terabytes

Australian Bureau of Stats: 250 Terabytes

AT&T call records: 312 Terabytes

eBay database: | .4 Petabytes
Yahoo click data: 2 Petabytes

What matters for these databases?

http://www.computerworld.com/article/2536160/business-intelligence/been-audited-lately--blame-the-irs-s-massive--superfast-data-warehouse.html
http://www.dbms2.com/2009/09/19/oracle-database-siz/
http://www.comparebusinessproducts.com/fyi/10-largest-databases-in-the-world
http://www.computerworld.com/article/2535825/business-intelligence/size-matters--yahoo-claims-2-petabyte-database-is-world-s-biggest--busiest.html
http://www.computerworld.com/article/2535825/business-intelligence/size-matters--yahoo-claims-2-petabyte-database-is-world-s-biggest--busiest.html

Large Databases

-
Accuracy, Cormstency I
US Internal Revenue Service: |50 Terabytes <_|Durab|l|ty Rich queries |

eBay database: | 4 Petabytes
:>|A_vai|a_bty
Yahoo click data: 2 Petabytes Timeliness

What matters for these databases?

http://www.computerworld.com/article/2536160/business-intelligence/been-audited-lately--blame-the-irs-s-massive--superfast-data-warehouse.html
http://www.dbms2.com/2009/09/19/oracle-database-siz/
http://www.comparebusinessproducts.com/fyi/10-largest-databases-in-the-world
http://www.computerworld.com/article/2535825/business-intelligence/size-matters--yahoo-claims-2-petabyte-database-is-world-s-biggest--busiest.html
http://www.computerworld.com/article/2535825/business-intelligence/size-matters--yahoo-claims-2-petabyte-database-is-world-s-biggest--busiest.html

Example: Instance of St Auribute names

Students(sid:string, name:string, login:stringj age:integer, gpa:real)

&\‘d name login age | gpa
aplename g6 |Jones |jones@eecs .

53688 [Smith |[smith@statistics
53650 |Smith |smith@math

. ardvdlity = 3 (rows)
Tuples or rows 5 (columns)

* All rows (tuples) are distinct

SQL - A language for Relational DBs

e SOL = Structured Query Language
e Supported by Spark DataFrames (SparkSOL)

* Some of the functionality SQL provides:
» Create, modify, delete relations
» Add, modify, remove tuples
» Specify queries to find tuples matching criteria

http://en.wikipedia.org/wiki/SQL
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html

Querles iIn SQL

* Single-table queries are straightforward

e Jofindall I8 year old students, we can write:
SELECT

FROM Students S
WHERE S.age=18

* Jo find just names and logins:
SELECT S.name, S.login

FROM Students S
WHERE S.age=18

Querying Multiple Relations

« (Can specify a join over two tables as follows:

SELECT S.name, E.cid
FROM Studgnts S, Enrolled E
WHERE S.sid=E.sid

Students
Enrolled _ :
S S.sid S.name |S.login S.age |S.gpa
E E.sid E.cid E.grade :
: 53341 Jones jones@cs |18 3.4
53831 Physics203 A 53831 Smith |[smith@ee |18 3.2
53650 Topologyi12 A
® (53342 Historyios B S, Sand E

Cross Join

* (artesian product of two tables (E x 5):

Enrolled Students

E E.sid E.cid E.grade S S.sid S.name |S.login S.age |[S.gpa
53831 Physics203 A 53341 Jones |jones@cs |18 3.4
53650 Topology112 A 53831 Smith |smith@ee |18 3.2
53341 Historyiog B

Cross Join

* (artesian product of two tables (E x 5):

Enrolled Students
E E.sid E.cid E.grade S S.sid S.name |S.login S.age |[S.gpa
53831 Physics203 A 53341 Jones |jones@cs |18 3.4
53650 Topology112 A 53831 Smith |smith@ee |18 3.2
53341 Historyiog B
E.sid |E.cid E.grade |S.sid |S.name |S.login S.age |S.gpa

53831 |Physics203 53341 |Jones jones@cs |18 3.4

53650 |Topology1i12 53341 |Jones jones@cs |18 3.4

53341 |Historyiosg 53341 |Jones jones@cs |18 3.4

53831 |Physics203 53831 [Smith |smith@ee |18 3.2

53650 |Topologyi112 53831 [Smith |smith@ee |18 3.2

WP | >(0|>|>

53831 |Smith |smith@ee |18 3.2

53341 [Historyiog

Where Clause
e (Choose matching rows using Where clause:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid

E.sid |E.cid E.grade |S.sid |S.name |S.login S.age |S.gpa
53831 |Physics203 A 53341 |Jones jones@cs |18 3.4
650 :I'opology112 A 1 _|Jones |jones@cs |18 3.4
(53341 95tory1o5 B < 53341 Janes jones@cs |18 3.4
<_&8314_91ysic5203 A (_&8314_§)nith smith@ee |18 3.2
53650 |Topology112 |A 53831 [Smith |smith@ee |18 3.2
53341 [Historyiog B 53831 [Smith |smith@ee |18 3.2

Select Clause
* Filter columns using Select clause:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid

E.cid S.name
Physics203 Jones
:I'opology112 Jones
(@story1o5 < Janes
<\ 491ysicszo3 (\ Jj)nith 18 3.2
Topologyi112 Smith
Historyiosg Smith

Result

« (an specify a join over two tables as follows:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid

Students
Enrolled _ :
S S.sid _ |S.name |S.login S.age |S.gpa
E.sid E.cid E.grade :
o : ;341 Jones jones@cs |18 3.4
53831) PEIEEReE A (53831 Smith |[smith@ee |18 3.2
53650 Topologyi12 A
<@41 Historyios B
S.name E.cid
Result = |Jones History1os

Smith Physics203

Explicit SQL Joins

SELECT S.name, E.classid _ _
FROM Students S INNER JOIN Enrolled E ON S.sid=E.sid

S S.name S.sid E E.sid E.classid
Jones 11111 11111 Historyiog
Smith 22222 11111 DataScience194
Brown 33333 22222 Frenchiso

LiLbtd, English1o

Result S.name E.classid

Jones Historyiog
Jones DataScience194

Smith Frenchiso

Equivalent SOQL Join Notations

* Explicit Join notation (preferred):

SELECT S.name, E.classid _ .
FROM Students S INNER JOIN Enrolled E ON S.sid=E.sid

SELECT S.name, E.classid

FROM St#d%nts S JOIN En?¥11ed E O;IS.sid=E.sid

SELECT S.name, E.cid
FROM Studgnts S, Enrolled E
WHERE S.sid=E.sid

SQL Types of Joins

SELECT S.name, E.classid _ _
FROM Students S INNER JOIN Enrolled E ON S.sid=E.sid

S S.name S.sid E E.sid E.classid
Jones 11111 11111 Historyiog
Smith 22222 11111 DataScience194
Brown 33333 22222 Frenchiso

LiLLL, English1o

Result S.name E.classid

Jones History1o5 Unmatched keys
Jones DataScience194
Smith Frenchiso

The type of join controls how unmatched keys are handled

SQL Joins: Left Outer Join

SELECT S.name, E.classid _ _
FROM Students S LEFT OUTER JOIN Enrolled E ON S.sid=E.sid

S S.name S.sid E E.sid E.classid
Jones 11111 11111 Historyiog
Smith 22222 11111 DataScience194
Brown 33333 22222 Frenchiso

LiLLL, English1o

Result S.name E.classid

Jones History1o5 Unmatched keys
Jones DataScience194

Smith Frenchiso

Brown <NULL>

SQL Joins: Right Outer Join

SELECT S.name, E.classid
FROM Students S RIGHT OUTER JOIN Enrolled E ON
S.sid=E.sid

S S.name S.sid E E.sid E.classid
Jones 11111 11111 Historyiog
Smith 22222 11111 DataScience194
Brown 33333 22222 Frenchiso

LiLLL, English1o

Result S.name E.classid

Jones History1o5 Unmatched keys
Jones DataScience194

Smith Frenchiso

<NULL> English1o

Spark Joins

e 5SparkSOL and Spark DatalFrames support joins

e join(other, on, how):

» other — right side of the join
» on —join column name, list of column (names), or join expression
» how — Inner, outer; left_outer; right_outer; left_semi

http://spark.apache.org/docs/latest/api/python/pyspark.sql.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.join

Spark Join Examples(!)

>>> df = sqlContext.createDataFrame(data, [, 1)
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2, | s 1)

[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]

>>> df.join(df2,)
[Row(name=u'Bob', age=2, height=85)]

Inner Join — X.join(Y, cols)
» Return DF of rows with matching cols in both X and Y

Spark Join Examples(ll)

>>> df = sqlContext.createDataFrame(data, [, 1)
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2, | s 1)

[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]

>>> df.join(df2,).select(df.name, df2.height)
[Row(name=u'Bob', height=85)]

Inner Join — X.join(Y, cols)
» Return DF of rows with matching cols in both X and Y

Spark Join Examples(lIl)

>>> df = sqlContext.createDataFrame(data, [, 1)
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2, | s 1)

[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]

>>> df.join(df2, ,)
[Row(name=u'Chris', age=None, height=890),
Row(name=u'Alice', age=1, height=None),
Row(name=u'Bob', age=2, height=85)]

Outer Join — X.join(Y, cols, 'outer')
» Return DF of rows with matching cols in either X and Y

Spark Join Examples(lV)

>>> df = sqlContext.createDataFrame(data, [, 1)
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2, | s 1)

[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]

>>> df.join(df2, ,).select(.)
[Row(name=u'Chris', height=80),
Row(name=u'Alice', height=None),
Row(name=u'Bob', height=85)]

Outer Join — X.join(Y, cols, 'outer')
» Return DF of rows with matching cols in either X and Y

Spark Join Examples(V)

>>> df = sqlContext.createDataFrame(data, [, 1)
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2, | s 1)

[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]

>>> df.join(df2, ,)
[Row(name=u'Alice', age=1, height=None),
Row(name=u'Bob', age=2, height=85)]

Left Outer Join — X.join(Y, cols,
‘left outer')

» Return DF of rows with matching cols in X

Spark Join Examples(VI)

>>> df = sqlContext.createDataFrame(data, [, 1)
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2, | s 1)

[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]

>>> df.join(df2, ,)
[Row(name=u'Chris', age=None, height=890),
Row(name=u'Bob', age=2, height=85)]

Right Outer Join — X.join(Y, cols,
'right outer')

» Return DF of rows with matching cols in Y

Spark® Online Documentation

https://spark.apache.org/docs/latest/

API| Docs~

Spo'f(q - Overview Programming Guides ~ API| Docs~ Deploying~ More »

Spark Overview Scala

Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimiz Java

engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data
processing, MLIib for machine learning, GraphX for graph processing, and Spark Streaming. @
Downloading R

Get Spark from the downloads page of the project website. This documentation is for Spark version 1.6.1. Spark uses Hadoop’s client libraries for
HDFS and YARN. Downloads are pre-packaged for a handful of popular Hadoop versions. Users can also download a “Hadoop free” binary and
run Spark with any Hadoop version by augmenting Spark’s classpath.

If you'd like to build Spark from source, visit Building Spark.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS). It's easy to run locally on one machine — all you need is to have java
installed on your system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 7+, Python 2.6+ and R 3.1+. For the Scala API, Spark 1.6.1 uses Scala 2.10. You will need to use a compatible Scala version
(2.10.x).

https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/

Databricks Guide/

o
Visualizations Overview 7 ComTE Y
Visualizations This notebook outlines your various options for visualizations with Databricks.
Utilize the built-in visualizations for Databricks
Spark DataFrames can be displayed visually in Databricks and can be configured with just a few clicks.
Learn about the basics of using visualizations in your preferred language:
Spark ¢ Visualization Basics in SQL

« For SQL, see either of the notebooks above. Python or Scala is just used to generate the data displayed in the graph.

o~ s s

Spark® Technical Blogs

Databricks: https://databricks.com/blog/category/engineering

Cloudera: http://blog.cloudera.com/blog/category/spark/

IBM: http://www.spark.tc/blog/

« Hortonworks: http://hortonworks.com/blog/category/spark/

* Many morel (eBay, AWS, MapR, Datastax, etc)

https://databricks.com/blog/category/engineering
http://blog.cloudera.com/blog/category/spark/
http://www.spark.tc/blog/

(—

Spor

https

You

Spa

Apache Spark

Home

on You lube

www.youtube.com/user/TheApacheSpark

apache spark

<<

rK

Discussion About

Channels

Videos Playlists

All activities ¥

Spork’

Spoik

Apache Spark uploaded a video

The Spark Kernel - Chip Senkbeil IBM - Meet Up Talk

L che Spark
z s ago * 862
Talk Abstract

Apache Spark uploaded a video

TRAINING CONTINUES DevOps with Apache Spark
Workshop Advanced - Sameer Farooqui (Databricks)

ket Amanha Cancl

Q®
2

e -

4}

Check out the
Apache Spark
YouTube
Channel!

I Subscribe Y

Related channels

Databricks

Subscribe

»: The Spark Spot

gk

&7 1 HadoopSummit
C
HARQor

Hakka Labs
Subscribe

W MapR Technologies .

Subscribe

Subscribe

Typesafe

Subscribe

https://www.youtube.com/c/theapachespark

<7 Community | Apache Spa x Y}

€« C' & https://spark.apache.org/community.html#mailing

qur’(Lightning-fast cluster computing

Download Libraries ~ Documentation ~ Examples Community ~ FAQ

or contribute to the project on our mailing lists:

« user@spark.apache.org is for usage questions, help, and announcements. (subscribe) (unsubscribe)

« dev@spark.apache.org is for people who want to contribute code to Spark. (subscribe) (unsubscribe)
archives)

The StackQ i 2 e-spark is an unofficial but active forum for Spark users' questions and answers

rk Summit Europe 2015. Oct 27 - Oct 29 in Amsterdam.
rk Summit 2015. June 15 - 17 in San Francisco

Latest News
Spark 1.4.0 released

One month to Spark Summit
2015 in San Francisco (May

Announcing Spark Summit
Europe (May 15,

Spark Summit East 2015
Videos Posted (Apr : 1

Download Spark

http://spark.apache.org/community.html
http://spark.apache.org/community.html

SparK® Meetups
Apache Spark -

Find out what's happening in Apache Spark Meetup groups around the world ang
start meeting up with the ones near you.

186,279 421
members Meetup

http://spark.meetup.com/

Related topics: Big Data- Hadoop - Machine Learning - Data Analytics - Big Data Analytics -
Data Science - Apache Kafka - MapReduce - Data Mining -+ Scala

%

W ¢

http://spark.meetup.com/
http://spark.meetup.com/
http://spark.meetup.com/

Da‘tabl"iCks FOI"umS https://forums.databricks.com/

€« c

@
gdatabricks

Community forum for
Databricks users

Mostly Databricks-specific Q&A

Some general Spark Q&A

https://forums.databricks.com/
https://forums.databricks.com/

A community index of packages for Apache Spark.

spark-avro

Integration utilities for using Spark with Apache Avro data

spark-redshift

Spark and Redshift integration

kafka-spark-consumer

Low Level Kafka-Spark Consumer

Packages

73 packages

http://spark-packages.org/

232 software packages for Spark
» User-provided Spark extensions
» Community votes (&8)

http://spark-packages.org/
http://spark-packages.org/

Spark® Source Code

https://github.com/apache/spark/

ssssssssssssssssssssss c + @ ‘

Hint: For detalled
R : . —] o explanations, check out
B e ~ comments In code

MechCoder
uuuuuuuuuu

https://github.com/apache/spark/
https://github.com/apache/spark/

Spark® Research Papers

park: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica
University of California, Berkeley

Abstract

MapReduce and its variants have been highly successful

splementing large-scale data-istensive applicatsons

oa commodity clusters. However, most of these sy ns
are built around an acyclic data flow model that is not
suitable for other popular spplications. This paper fo-
cuses on one such class of applications: those that reuse
a working set of data across multiple paralle] operations.
This incly
as well as
new framework called Spark that supports these applica:
tions whilk retaining the scalability and fault tolerance of

Ses many ilerative mac carning algorithens.

teractive data analysis tools. We propose a

MapReduce. To achaeve these goals, Spark introdeces an
ahstraction called resilicat distributed datasets (RDDs).
An RDD is a read-only collection of objects purtitioned
am be rebuilt if a pantition

across & set of machines thas

is lost. Spark can outperform Hadoop by 10x in i

rative

muchine learning jobs. and can be used to interactively

query a 39 GB dataset with sub-second respossse time.
1 Introduction

A new model of cluster computing has become widely

popular. in which data- competations arc cxecuted

oa clusters of uarcliable machines by systems that auto-
matically provide locality-aware scheduling. fault toler
ance, and load balancing. MapReduce [11] pioncered this
madel, while systems like Dryad [17)] and Map-Reduce-
Merge [24] generalized the types of data flows supported.

These systems achicve their scalability and fault tolerance
by peovid L

a programmsng model the wser creates.

acyclic data flow graphs 10 pass input data through a set of
operatoes. This allows the underlying system o manage
scheduling and 10 react 10 fauls without user inservention

While this data flow programening model is usefal for a
large class of applications. there are applcations that can-

not be expressed efficiently as acyclic data ows. In this
paper. we focus om ome such class of applications: those

that reuse a working set of data across multiple paraliel

This inchades two use cases where we have

opera
seen Hadoop users report that MapReduce is deficient

o HMerative jobs: Many common mach:
rithens apply 2 function repeatedly to the same dataset

< learnieg

10 optimize a parameter (¢.g.. through gradicat de-

). While cach iscration can be expressed as a

MapReduce/Dryad job, each job must reload the data
from disk. incurring a sigaificant performance penalty

o Interactive analytics: Hadoop is ofien wsed 1o run

ad-hoc explorasory queries on large datasets, throagh
SQL imterfaces such as Pig [21] and Hive [1). eally,
ould be able 10 load a datasct of interest i
memoey across a number of machincs and query it re
peatedly. However, with Hadoop. each query incurs
significant latency (1ens of seconds) because it rums as
p disk

aw

a separate MapReduce job and reads data f

This paper presents 2 new cluster computing frame

work called Spark, which supports applcations w
and fauht

working sts while providing similar scalabi

tolerance propertics 1o MapReduce

The main abstraction in Spark is that of a resilient dis
tributed de

ly col-

set (RDD). which represents a res

ed across a set of machines that

lection of objects parti
can be rebuilt if a partition is Jost. Users can explicitly
cache an RDD in memory across mach

es and reuse it
s, RDDs
achieve fault tolerance through a notioa of lineage: if a
partition of an RDD is Jost, the RDD has encugh infor
mation abowt how it was derived from other RDDs to be
able to rebuild just that partition. Although RDDs are

in multiple MapReduce-like paralle! oper

not a general shared memory abstraction. they represent
2 SWOSt-spot between expressivity on the coe hand
scalabilsty and rel
found them well-suited for a variety of applicatioas.

ity on the other hand

Spark is implemented in Scala [S]). a statically typed
high-level programming language for the Java VM. and

exposes a functional pro e
DryadLINQ [25). In addition, Spark can be used inter-
actively from a modified version of the Scala interpreter.

which allows the user 1o RDDs, fusctions, vari-

ables and classes and use them in paralle!

an efficient,

d imeractively 10 proc

Although o
type. early experience with the system is encouraging. We
show that Spark can outperform Hadoop by 10x in itera.
tive machine bearning worklaads and can be used interac-
tively t0 scan a 39 GB dataset with sub-second latency

mentation of Sp a proto-

anized as follows. Section 2 describes

This paper is org

Spark: Cluster Computing with
Working Sets

une 2010

rkel

~m

r

2

rk.

f’

Spark® Research Papers

Resilient Distributed Datasets: A Fault-Tolerant Abstracti

In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury,
Murphy McCauley, Michacl J. Franklin,

Tathagata Das,

Ankur Dave, Justin Ma,
henker, Ion Stoica

University of California, Berkeley

Abstract

We present Re Distributed Datasets (RDDs),
tributed memory abstraction that lets peo pe
form in-memory computations oa large clusters in a
faul RDDs are motiva
of applications that current computing frameworks has

amenc:

lcran enanncs

by two types.

dle inefliciently: iter
mining tools. In b

orithms and interactive d

)
cases, keeping data in memsary
can impeove performance by an order of magnitede
To achieve far

olerance

restricted form of shared memory, based on coarse-
grained transformations rather than fime-grained updates
d state. However, we show that RDDs ¢!

recent specialized p
ative jobs, such as Pregel. and new applications that the
mplemested RDDs in a

system called Spark. which we evaluale through a variety

models do not captare. We hav

of user applicatioas and benchmarks.

1 Introduction

Cluster computing frameworks like MapRedoce [10) and
Dryad [19] have beem widely adopted for large-scale data

asalytics. These systems let users wr

e parallel con

tations using a set of high-level operators, without having

10 woery about work distrsbution and faslt tolcrasce.
Although current frameworks peovide numerous ab
stractions for accessing a clusier’s o

sources, they L
memory. This makes them inefficient for an
class of emerging applications: thase
diate results acrons

K abstractions foe leverag

altiple competat

common in many ilerafive machine le

algorithms, inclading P:

and logistic regression. Another compelling use case is

interactive data mising. where a user runs

hoc queries on the same subset of th

multiple ad-
data. Unforu-

nately. in most currest frameworks., the only way 10 reuse
data between computations (¢.g.. between two MapRe-

duce jobs) ks to write it 10 an external stable storage sys-
tem. e.g.. a distributed file system. This incurs substantial
averheads due 10 data replication. disk VO, and serializa-

tioa, which can domsinate application execulion times.

specialized frameworks for some JN’IIHIL\'II\ that re
quire data reuse. For exa
scrative graph com

is a system for
scrmediate data
+ an ierative MapRe-

works only suppoet
loopeng

MapReduce steps). and perform data sharing implicitly
erns. They do e abstractions for

euse, €.5.. 1o bet a user boad several datasets

s paper, we propose a new abstr
tributed datasets (RDDs) that enables efficient
data reuse in & broad rasge

e.g. cells ina Iah le). With thes smterface, the caly ways
bt tolerance are to replicate the data across

g updates across machines. Both ap-
'mu.hu are expensive for data-|
ire cop
twoek. whase handw

k AM, and they incus

In comtrast 10 these sys¥

amounts.

th is far kowes

whstantial storag

RDDs peovide an inte

face based 0n coarse-g tramsfon

Chechpe s i scme RDDs sy be wsefel when » lis
oo0n chale poms R, bowo 554

and we Secuss e 3

Resilient Distributed Datasets: A
Fault- Tolerant Abstraction for In-
Memory Cluster Computing

http//www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

April 2012

Spark

SOQL

Spark SQL: Relational Data Processing in Spark

Michael Armbrust', Reynold S. Xin', Cheng Lian', Yin Huai', Davies Liu', Joseph K. Bradley',
Xiangrui Meng', Tomer Kaftant, Michael J. Franklin*, Ali Ghodsi', Matei Zaharia'

'Databricks Inc.

ABSTRACT

Spark SQL is a new module in Apache Spark that integrates rela-
tional processing with Spark’s functional programming APIL. Built
on our experience with Shark, Spark SQL lets Spark program-
mers leverage the benefits of relational processin; g, declarative
queries and optimized storage), and lets SQL users call complex
analytics libraries in Spark (e.g.. machine learmning). Compared to
previous systems, Spark SQL makes two main additions. First, it
offers much tighter integration between relational and procedural
processing, through a declarative Dat ne API that integrates
with procedural Spark code. Second, it includes a highly extensible
optimizer, Catalyst, built using features of the Scala programming
language, that makes it casy to add composable rules, control code
generation, and define extension points. Using Catalyst, we have
built a variety of features (e.g., schema inference for JSON, machine
learning types, and query federation to external databases) tailored
for the complex needs of moder data analysis. We see Spark SQL
as an evolution of both SQL-on-Spark and of Spark itself, offering
richer APIs and optimizations while keeping the benefits of the
Spark programming model

Categories and Subject Descriptors

H.2 [Database Management]: Systems

Keywords

Databases; Data Warchouse; Machine Leamning: Spark: Hadoop
1 Introduction

Big data applications require a mix of processing techniques, data
sources and storage formats. The earliest systems designed for
these workloads. such as MaoReduce. eave users a powerful. but

“MIT CSAIL

‘AMPLab, UC Berkeley

While the popularity of relational systems shows that users often
prefer writing declarative queries, the relational approach is insuffi-
cient for many big data applications. First, users want to perform
ETL to and from various data sources that might be semi- or un-
structured, requiring custom code. Second, users want to perform
advanced analytics, such as machine learning and graph processing,
that are challenging to express in relational systems. In practi
we have observed that most data pipelines would ideally be
pressed with a combination of both relational queries and complex
procedural algorithms. Unfortunately, these two classes of systems—
relational and procedural—have until now remained largely disjoint,
forcing users to choose one paradigm or the other.

This paper describes our effort to combine both models in Spark
SQL., a major new component in Apache Spark [39). Spark SQL
builds on our carlier SQL-on-Spark effort, called Shark. Rather
than forcing users to pick between a relational or a procedural API,
however, Spark SQL lets users scamlessly intermix the two.

Spark SQL bridges the gap between the two models through two
contributions. First, Spark SQL provides a DataFrame API that
can perform relational operations on both external data sources and
Spark’s built-in distributed collections. This API is similar to the
widely used data frame concept in R [32], but evaluates operations
lazily so that it can perform relational optimizations. Second, to
support the wide range of data sources and algorithms in big data,
Spark SQL introduces a novel extensible optimizer called Catalyst.
Catalyst makes it casy to add data sources, optimization rules, and
data types for domains such as machine leaming

The DataFrame API offers rich relational/procedural integration
within Spark programs. DataFrames are collections of structured
records that can be manipulated using Spark’s procedural API, or
using new relational APIs that allow richer optimizations. They can

Relational Data
in Spark

Spark SQL:
Processin

Seemlessly mix SQL queries with Spark programs

June 2015

https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQL Sigmod20 1 5.pdf

History Summary

2004 2010
MapReduce paper Spark paper
2002 2004 2006 2008 2010 2012 2014
2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level
2006

Hadoop @ Yahoo!

Historical References

circa 1979 — Stanford, MIT, CMU, etc.: set/list operations in LISF Prolog, etc., for parallel processing
http://www-formal.stanford.edu/imc/history/lisp/lisp.html

circa 2004 — Google: MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
http://research.google.com/archive/mapreduce.html

circa 2006 — Apache Hadoop, originating from the Yahoo!'s Nutch Project
Doug Cutting
http://nutch.apache.org/

circa 2008 —Yahoo!: web scale search indexing
Hadoop Summit, HUG, etc.
http://hadoop.apache.org/

circa 2009 — Amazon AWS: Elastic MapReduce
Hadoop modified for EC2/S3, plus support for Hive, Pig, Cascading, etc.
http://aws.amazon.com/elasticmapreduce/

Spark Research Papers

Spark: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica
USENIX HotCloud (2010)

people.csail.mit.edu/matei/papers/20 | O/hotcloud_spark.pdf

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, lon Stoica

NSDI (2012)

usenix.org/system/files/conference/nsdil 2/nsdil 2-final | 38.pdf

